Home
Class 12
MATHS
Prove that ^n C0 ^(2n)Cn- ^n C1 ^(2n-2)C...

Prove that `^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot`

Text Solution

Verified by Experts

L.H.S. `= .^(n)C_(0).^(2n)C_(n)-.^(n)C_(1).^(2n-2)C_(n)+.^(n)C_(2).^(2n-4)C_(n)-"…."`
= Coefficient of `x^(n)` in `[.^(n)C_(0)(1+x)^(2n)- .^(n)C_(1)(1+x)^(2n-2)+.^(n)C_(2)(1+x)^(2n-4)-"….."]`
=Coefficient of `x^(n)` in `[(1+x)^(2) - 1]^(n)`
= Coefficient of `x^(n)` in `(2x+x^(2))^(n)`
= Coefficient of `x^(n)` in `x^(n)(2+x)^(n)`
`= 2^(n)`
= R.H.S.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

If (18 x^2+12 x+4)^n=a_0+a_(1x)+a2x2++a_(2n)x^(2n), prove that a_r=2^n3^r(^(2n)C_r+^n C_1^(2n-2)C_r+^n C_2^(2n-4)C_r+) .

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Prove that n C_0+^n C_3+^n C_6+=1/3(2^n+2cos(npi)/3) .

Using binomial theorem (without using the formula for ^n C_r ) , prove that "^n C_4+^m C_2-^m C_1^n C_2 = ^m C_4-^(m+n)C_1^m C_3+^(m+n)C_2^m C_2-^(m+n)C_3^m C_1+^ (m+n)C_4dot

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that C_(0)^(2) + C_(1)^(2) + C_(2)^(2) +…+C_(n)^(2) = (2n!)/(n!)^(2)

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .