Home
Class 12
MATHS
Find the value of sum(p=1)^n(sum(m=p)^n^...

Find the value of `sum_(p=1)^n(sum_(m=p)^n^n C_m^m C_p)dot` And hence, find the value of `(lim)_(nvecoo)1/(3^n)sum_(p=1)^n(sum_(m=p)^n^n C_m^m C_p)dot`

Text Solution

Verified by Experts

The correct Answer is:
`(3^(n) - 2^(n))` and `1`

`S = underset(p=1)overset(n)sum(underset(m=p)overset(n)sum.^(n)C_(m).^(m)C_(p))`
`= underset(p=1)overset(n)sum(.^(n)C_(p).^(p)C_(p)+.^(n)C_(p+1).^(p)+1)C_(p) + "....."+.^(n)C_(n).^(n)C_(p))`
`= underset(p=1)overset(n)sum` [coefficient of `x^(p)` in `{.^(n)C_(p)(1+x)^(p)+.^(n)C_(p+1)(1+x)^(p+1)+"....."+.^(n)C_(n)(1+x)^(n)}]`
`= underset(p=1)overset(n)sum` [Coefficeint of `x^(p)` in `{.^(n)C_(0)+.^(n)C_(1)(1+x)+.^(n)C_(2)(1+x)^(2)+"....."+.^(n)C_(p-1)(1+x)^(p-1)+.^(n)C_(p)(1+x)^(p)+"....."+.^(n)C_(n)(1+x)^(n)}]`
`= underset(p=1)oversetg(n)sum` [coefficient of `x^(p)` in `{1+(1+x)}^(n)`]
`= underset(p=1)overset(n)sum` [coefficient of `x^(p)` in `(2+x)^(n)`]
`= underset(p=1)overset(n)sum[.^(n)C_(p)2^(n-p)]`
` = .^(n)C_(1)2^(n-1)+.^(n)C_(2)2^(n-2)+"...".^(n)C_(n)`
`= .^(n)C_(0)2^(n)+.^(n)C_(1)2^(n-1)+.^(n)C_(2)2^(n-2)+"...."+.^(n)C_(n)-.^(n)C_(0)2^(n)`
`= (1+2)^(n)-2^(n)`
`= 3^(n) - 2^(n)`
Alternate solution :
`underset(p=1)overset(n)sum(underset(m=p)overset(n)sum.^(n)C_(m).^(m)C_(p))= underset(p=1)overset(n)sum(underset(m=p)overset(n)sum(n!)/((n-m)!m!)(m!)/((m-p)!p!))`
`= underset(p=1)overset(n)sum(underset(m=p)overset(n)sum(n!)/((n-m)!)(1)/((m-p)!p!))`
`=underset(p=1)overset(n)sum(n!)/((n-p)!p!)(underset(m=p)overset(n)sum((n-p)!)/((n-m)!(m-p)!))`
`= underset(p=1)overset(n)sum.^(n)C_(P)(underset(m=p)overset(n)sum.^(n-p)C_(m-p))`
`= underset(p=1)overset(n)sum .^(n)C_(p)2^(n-p)`
`= .^(n)C_(1)2^(n-1)+.^(n)C_(2)2^(n-2)+"....."+.^(n)C_(n)2^(0)`
`= (2+1)^(n)-.^(n)C_(0)2^(n)`
`= 3^(n) - 2^(n)`
Also,
`underset(nrarroo)"lim"1/(3^(n)) underset(p=1)overset(n)sum(overset(n)underset(m=p)sum.^(n)C_(m).^(m)C_(p))= underset(nrarroo)"lim"(3^(n)-2^(n))/(3^(n)) = 1`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

Find the sum sum_(r=0)^n^(n+r)C_r .

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to

Find the sum sum_(r=1)^n r^2(^n C_r)/(^n C_(r-1)) .

Find the value of lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of ndot

If ""^(n)P_(5)=20 ^(n)P_(3)"" , find the value of n.

Find the sum of the series sum_(r=1)^n rxxr !dot

If p(m)=m^(2)-3m+1 , then find the value of p(1) and p(-1) .