Home
Class 12
MATHS
Find the coefficient of x^2in(a/(a+x))^(...

Find the coefficient of `x^2in(a/(a+x))^(1//2)+(a/(a-x))^(1//2)`

Text Solution

Verified by Experts

The correct Answer is:
`3/4 a^(2)`

`((a+x)/(a))^(-1//2)+((a-x)/(a))^(-1//2)=(1-(x)/(a))^(-1//2)+(1-(x)/(a))^(-1//2)`
`=[1+(-1/2)(x/a)+((-(1)/(2))(-3/2))/(2.1)(x/a)^(2)+"......"]+[1+(-1/2)(-x/a)+((-1/2)(-3/2))/(2.1)(-x/a)^(2)+"....."]`
`= 2+(3x^(2))/(4a^(2))`
Hence, the coefficeint of `x^(2)` is `(3//4)a^(2)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the coefficient of x^(2) in (2x + 1/(2x))^(4)

Find the coefficient of x^(5) in (x^(2) - 3/x)^(7)

Find the coefficient of x^(20) in (x^2+2+1/(x^2))^(-5)(1+x^2)^(40)dot

Find the coefficient of x^(8) in the expansion of (1-2x)^(- 1/2) .

Find the coefficient of x^n in (1+x/(1!)+(x^2)/(2!)++(x^n)/(n !))^2 .

Find the coefficient of x^k in 1 +(1 +x) +(1 +x)^2+.. +(1+x)^n (0 <=k<=n) .

Find the coefficient of x^(12) in expansion of (1-x^(2)+x^(4))^(3)(1-x)^(7) .

Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

Find the coefficient of x^5 in the expansion of (1+x^2)^5 (1+x)^4