Home
Class 12
MATHS
The value of 2xx.^(n)C(1) + 2^(3) xx .^(...

The value of `2xx.^(n)C_(1) + 2^(3) xx .^(n)C_(3) + 2^(5) + "…."` is

A

`(3^(n)+(-1)^(n))/(2)`

B

`(3^(n)-(-1)^(n))/(2)`

C

`(3^(n) + 1)/(2)`

D

`(3^(n) - 1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

`(1+2)^(n) - (1-2)^(n) = 2[.^(n)C_(1)xx2+.^(n)C_(3)xx2^(3)+.^(n)C_(5)xx2^(5)+"….."]`
`:. .^(n)C_(1)xx2+.^(n)C_(3)xx2^(3)+.^(n)C_(5)xx2^(5)+"…."= (3^(n)-(-1)^(n))/(2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

The sum 2 xx .^(40)C_(2) + 6 xx .^(40)C_(3) + 12 xx .^(40)C_(4) + 20 xx .^(40)C_(5) + "…." + 1560 xx .^(40)C_(40) is divisible by

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

In .^(2n)C_(3) :.^(n)C_(3) = 11 : 1 then n is

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .

If (1 - x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + ......... + C_(n)x^(n) , then the value of 1.C_(1) + 2.C_(3) + 3.C_(3) + ......... + n.C_(n) =

If ""^(2n)C_(3) : ""^(n) C_(3)= 11 : 1 then n is

CENGAGE-BINOMIAL THEOREM-Exercise (Single)
  1. The value of x for which the sixth term in the expansion of [2^(log)2^...

    Text Solution

    |

  2. The number of distinct terms in the expansion of (x+1/x+1/(x^2))^(15) ...

    Text Solution

    |

  3. The value of 2xx.^(n)C(1) + 2^(3) xx .^(n)C(3) + 2^(5) + "…." is

    Text Solution

    |

  4. If (4x^(2) + 1)^(n) = sum(r=0)^(n)a(r)(1+x^(2))^(n-r)x^(2r), then the ...

    Text Solution

    |

  5. The fractional part of 2^(4n)//15 i s(n in N) 1/(15) b. 2/(15) c. 4/...

    Text Solution

    |

  6. If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest i...

    Text Solution

    |

  7. The remainder when the number 3^(256) - 3^(12) is divided by 8 is

    Text Solution

    |

  8. The smallest integer larger than (sqrt(3) + sqrt(2))^(6) is

    Text Solution

    |

  9. Find the coefficient of x^5 in the expansion of (1+x^2)^5 (1+x)^4

    Text Solution

    |

  10. Coefficient of x^(2)in the expansion of (x^(3) + 2x^(2) + x + 4)^(15) ...

    Text Solution

    |

  11. If the coefficients of rth and (r+1)t h terms in the expansion of (3+7...

    Text Solution

    |

  12. In the expansion of (x^3-1/(x^2))^n ,n in N , if the sum of the coeff...

    Text Solution

    |

  13. If (1+2x+x^2)^n=sum(r=0)^(2n)ar x^r ,then a= (^n C2)^2 b. ^n Crdot^n ...

    Text Solution

    |

  14. If the term independent of x in the (sqrt(x)-k/(x^2))^(10) is 405, the...

    Text Solution

    |

  15. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  16. If the coefficient of x^(7) in [ax^(2) + (1/(bx))]^(11) equals the coe...

    Text Solution

    |

  17. Find a positive value of m for which the coefficient of x^2 in the exp...

    Text Solution

    |

  18. The term independent of a in the expansion of (1+sqrt(a)+1/(sqrt(a)-1)...

    Text Solution

    |

  19. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  20. The coefficient of x^n in (1+x)^(101)(1-x+x^2)^(100) is nonzero, then ...

    Text Solution

    |