Home
Class 12
MATHS
^404C4-^303C4.^4C1+^202C4.^4C2-^101C4.^4...

`^404C_4-^303C_4.^4C_1+^202C_4.^4C_2-^101C_4.^4C_3=`

A

`(401)^(4)`

B

`(101)^(4)`

C

`0`

D

`(201)^(4)`

Text Solution

Verified by Experts

The correct Answer is:
B

The given expression is the coefficient of `x^(4)` in
`.^(4)C_(0)(1+x)^(404)-.^(4)C_(1)(1+x)^(303)+.^(4)C_(2)(1+x)^(202)-.^(4)C_(3)(1+x)^(101)+.^(4)C_(4)`
= Coefficient of`x^(4)` in `[(1+x)^(101)-1]^(4)`
`=` Coefficient of `x^(4)` in `(.^(101)C_(1)x+.^(101)C_(2)x^(2)+".....")^(4)`
`= (101)^(4)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem (without using the formula for ^n C_r ) , prove that "^n C_4+^m C_2-^m C_1^n C_2 = ^m C_4-^(m+n)C_1^m C_3+^(m+n)C_2^m C_2-^(m+n)C_3^m C_1+^ (m+n)C_4dot

[(^n C_0+^n C_3+)1//2(^n C_1+^n C_2+^n C_4+^n C_5]^2+3//4(^n C_1-^n C_2+^n C_4-^n C_5+)^2= 3 b. 4 c. 2 d. 1

Find the value of ^20 C_0-(^(20)C_1)/2+(^(20)C_2)/3-(^(20)C_3)/4+dot

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the value of ^4n C_0+^(4n)C_4+^(4n)C_8++""^(4n)C_(4n) .

Show that 4C_0 +4C_1 +4C_2 +.....+4C_n>(2^(4n))/(n^3),w h e r e^n C_r=n !//[r !(n-r)!]dot

If for z as real or complex, (1+z^2+z^4)^8=C_0+C1z2+C2z4++C_(16)z^(32)t h e n (a) C_0-C_1+C_2-C_3++C_(16)=1 (b) C_0+C_3+C_6+C_9+C_(12)+C_(15)=3^7 (c) C_2+C_5+C_6+C_(11)+C_(14)=3^6 (d) C_1+C_4+C_7+C_(10)+C_(13)+C_(16)=3^7

In the expansion of (1+x+x^3+x^4)^10, the coefficient of x^4 is ^40 C_4 b. ^10 C_4 c. 210 d. 310

The order of the differential equation whose general solution is given by y=(C_1+C_2)cos(x+C_3)-C_4e^(x+C_5), where C_1,C_2,C_3,C_4,C_5 , are arbitrary constants, is (a) 5 (b) 4 (c) 3 (d) 2

(C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n)= (C_0C_1C_2.....C_(n-1) (n+1)^n)/(n!)

CENGAGE-BINOMIAL THEOREM-Exercise (Single)
  1. ""^(15)C(0)=

    Text Solution

    |

  2. If (1+x)^n=C0+C1x+C2x^2++Cn x^n ,t h e nC0C2+C1C3+C2C4++C(n-2)Cn= ((2...

    Text Solution

    |

  3. ^404C4-^303C4.^4C1+^202C4.^4C2-^101C4.^4C3=

    Text Solution

    |

  4. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is

    Text Solution

    |

  5. The value of sum(r=0)^(50)(-1)^r(^(50)Cr)/(r+2) is equal to 1/(50xx51)...

    Text Solution

    |

  6. (n+2)nC0(2^(n+1))-(n+1)nC1(2^(n))+(n)nC2(2^(n-1))-.... is equal to

    Text Solution

    |

  7. The value of sum(r=0)^(50)(-1)^r(^(50)Cr)/(r+2) is equal to 1/(50xx51)...

    Text Solution

    |

  8. sum(r=0)^(300)ar x^r=(1+x+x^2+x^3)^(100)dot If a=sum(r=0)^(300)ar ,t ...

    Text Solution

    |

  9. sum(r=0)^(300)ar x^r=(1+x+x^2+x^3)^(100)dot If a=sum(r=0)^(300)ar ,t ...

    Text Solution

    |

  10. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  11. Iff(x) =.^(40)C(1).x(1-x)^(39) + 2..^(40)C(2)x^(2)(1-x)^(38)+3..^(40)C...

    Text Solution

    |

  12. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)), then the value of (sumsum)(0l...

    Text Solution

    |

  13. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be 4...

    Text Solution

    |

  14. Show that x^(n) =1 + n(1 -1/x) + (n(n+1))/1.2 (1 -1/x)^(2) + ...

    Text Solution

    |

  15. sum(k=1)^ook(1-1/n)^(k-1)= n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

    Text Solution

    |

  16. The coefficient of x^4 in the expansion of {sqrt(1+x^2)-x}^(-1) in asc...

    Text Solution

    |

  17. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+.... is equal to

    Text Solution

    |

  18. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  19. If |x|<1,t h e n1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is ...

    Text Solution

    |

  20. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |