Home
Class 12
MATHS
(n+2)nC0(2^(n+1))-(n+1)nC1(2^(n))+(n)nC2...

`(n+2)nC_0(2^(n+1))-(n+1)nC_1(2^(n))+(n)nC_2(2^(n-1))-....` is equal to

A

4

B

4n

C

4(n+1)

D

2(n+2)

Text Solution

Verified by Experts

The correct Answer is:
C

`t_(r+1)=(-1)^(r)(n-r+2).^(n)C_(r)2^(n-r+1)`
`= (n+2)2^(n+1)(-1)^(r).^(n)C_(r)(1/2)^(r)-2^(n+1)r.^(n)C_(r)(1/2)^(r)`
`= (n+2)2^(n+1).^(n)C_(r)(-1/2)^(r) + 2^(n)n.^(n-1)C_(r-1)(-1/2)^(r-1)`
`:.` Sum `= (n+2)2^(n+1){.^(n)C_(0) - .^(n)C_(1) xx 1/2 .^(n)C_(2)xx(1/2)^(2)-"...."}`
`+2^(n){.^(n-1)C_(0)-.^(n-1)C_(1)xx1/2+.^(n-1)C_(2)xx(1/2)^(2)+"...."}`
`= (n+2)2^(n+1)(1-1/2)^(n)+n2^(n)(1-1/2)^(n-1)`
`= 2(n+2)+2n`
`= 4n+4`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

If n = 5, then (""^(n)C_(0))^(2)+(""^(n)C_(1))^(2)+(""^(n)C_(2))^(2)+......+(""^(n)C_(5))^(2) is equal to

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If |x|<1,t h e n1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

If (1+x)^n=C_0+C_1x+C2x2++C_n x^n , n in N ,t h e nC_0-C_1+C_2-+(-1)^(n-1)C_(m-1), is equal to (mltn)

lim_(n rarr 0)(1/(1+n^(2))+2/(1+n^(2))+3/(1+n^(2))+....+n/(1+n^(2))) is equal to

The value of sum sum_(n=1)^(oo)cot^(-1)(((n^(2)+2n)(n^(2)+2n+1)+1)/(2n+2)) is equal to

CENGAGE-BINOMIAL THEOREM-Exercise (Single)
  1. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is

    Text Solution

    |

  2. The value of sum(r=0)^(50)(-1)^r(^(50)Cr)/(r+2) is equal to 1/(50xx51)...

    Text Solution

    |

  3. (n+2)nC0(2^(n+1))-(n+1)nC1(2^(n))+(n)nC2(2^(n-1))-.... is equal to

    Text Solution

    |

  4. The value of sum(r=0)^(50)(-1)^r(^(50)Cr)/(r+2) is equal to 1/(50xx51)...

    Text Solution

    |

  5. sum(r=0)^(300)ar x^r=(1+x+x^2+x^3)^(100)dot If a=sum(r=0)^(300)ar ,t ...

    Text Solution

    |

  6. sum(r=0)^(300)ar x^r=(1+x+x^2+x^3)^(100)dot If a=sum(r=0)^(300)ar ,t ...

    Text Solution

    |

  7. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  8. Iff(x) =.^(40)C(1).x(1-x)^(39) + 2..^(40)C(2)x^(2)(1-x)^(38)+3..^(40)C...

    Text Solution

    |

  9. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)), then the value of (sumsum)(0l...

    Text Solution

    |

  10. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be 4...

    Text Solution

    |

  11. Show that x^(n) =1 + n(1 -1/x) + (n(n+1))/1.2 (1 -1/x)^(2) + ...

    Text Solution

    |

  12. sum(k=1)^ook(1-1/n)^(k-1)= n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

    Text Solution

    |

  13. The coefficient of x^4 in the expansion of {sqrt(1+x^2)-x}^(-1) in asc...

    Text Solution

    |

  14. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+.... is equal to

    Text Solution

    |

  15. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  16. If |x|<1,t h e n1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is ...

    Text Solution

    |

  17. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  18. If |x|<1, then find the coefficient of x^n in the expansion of (1+x+x^...

    Text Solution

    |

  19. If x is positive, the first negative term in the expansion of (1 + x)^...

    Text Solution

    |

  20. If x is so small that x^(3) and higher power of x may neglected, then ...

    Text Solution

    |