Home
Class 12
MATHS
The value of sum(r=0)^(50)(-1)^r(^(50)Cr...

The value of `sum_(r=0)^(50)(-1)^r(^(50)C_r)/(r+2)` is equal to `1/(50xx51)` b. `1/(52xx50)` c. `1/(52xx51)` d. none of these

A

`(1)/(50xx51)`

B

`(1)/(52xx50)`

C

`1/(52xx51)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Here,
`T_(r)=(-1)^(r)(.^(50)C_(r))/(r+2)`
`=(-1)^(r)(r+1)(.^(50)C_(r))/((r+1)(r+2))`
`=(-1)^(r)(r+1)(.^(52)C_(r+2))/(51xx52)`
`= (-1)^(r)([(r+2)-1]^(52)C_(r+2))/(51xx52)`
`= (-1)^(r)([52.^(51)C_(r+1)-.^(52)C_(r+2)])/(51xx52)`
`= ([-52.^(51)C_(r+1)(-1)^(r+1)-.^(52)C_(r+2)(-1)^(r+2)])/(51xx52)`
`underset(r=0)overset(50)sum(-1)^(r)(.^(50)C_(r))/(r+2)`
` = -52((1-1)^(51)-.^(51)C_(0))/(51xx52)-((1-1)^(52)-.^(52)C_(0)+.^(52)C_(1))/(51xx52)`
`= 1/51-1/52`
`= 1/(51xx52)`
Alternate solution :
`(1-x)^(n)=underset(r=0)overset(n)sum.^(n)C_(r)(-1)^(r)x^(r)`
or `x(1-x)^(n)=underset(r=0)overset(n)sum(-1)^(r).^(n)C_(r)x^(r+1)`
Intergrating both sides withing the limits 0 to 1, we get
`underset(0)overset(1)intx(1-x)^(n)dx=underset(r=0)overset(n)sum(-1)^(r)(.^(n)C_(r))/(r+2)`
or `underset(r=0)overset(n)sum(-1)^(r)(.^(n)C_(r))/(r+2) = underset(0)overset(1)intx(1-x)^(n)dx`
`= underset(0)overset(1)int(1-x)x^(n)dx`(Replace x by `1-x`)
`= |(x^(n+1))/(n+1)-(x^(n+2))/(n+2)|_(0)^(1)`
`= (1)/(n+1)-(1)/(n+2)`
`= (1)/((n+1)(n+2))`
Now put `n = 50`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(50)(-1)^r((50)C_r)/(r+2) is equal to a . 1/(50xx51) b. 1/(52xx50) c. 1/(52xx51) d. none of these

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

The value of sum_(r=0)^(10) (-1)^(r).4^(10-r)""^(30)C_(r)""^(30-r)C_(10-r) is equal to

The value of sum_(r=1)^n(-1)^(r+1)("^n C r)/(r+1) is equal to a. -1/(n+1) b. 1/n c. 1/(n+1) d. n/(n+1)

The value of ""^(50)C_(4)+sum_(r=1)^(6)""^(56-r)C_(3) is

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

The value of expression .^47 C_4+sum_(j=1)^5.^(52-j)C_3 is equal to a. .^47 C_5 b. .^52 C_5 c. .^52 C_4 d. none of these

CENGAGE-BINOMIAL THEOREM-Exercise (Single)
  1. The value of sum(r=0)^(50)(-1)^r(^(50)Cr)/(r+2) is equal to 1/(50xx51)...

    Text Solution

    |

  2. (n+2)nC0(2^(n+1))-(n+1)nC1(2^(n))+(n)nC2(2^(n-1))-.... is equal to

    Text Solution

    |

  3. The value of sum(r=0)^(50)(-1)^r(^(50)Cr)/(r+2) is equal to 1/(50xx51)...

    Text Solution

    |

  4. sum(r=0)^(300)ar x^r=(1+x+x^2+x^3)^(100)dot If a=sum(r=0)^(300)ar ,t ...

    Text Solution

    |

  5. sum(r=0)^(300)ar x^r=(1+x+x^2+x^3)^(100)dot If a=sum(r=0)^(300)ar ,t ...

    Text Solution

    |

  6. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  7. Iff(x) =.^(40)C(1).x(1-x)^(39) + 2..^(40)C(2)x^(2)(1-x)^(38)+3..^(40)C...

    Text Solution

    |

  8. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)), then the value of (sumsum)(0l...

    Text Solution

    |

  9. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be 4...

    Text Solution

    |

  10. Show that x^(n) =1 + n(1 -1/x) + (n(n+1))/1.2 (1 -1/x)^(2) + ...

    Text Solution

    |

  11. sum(k=1)^ook(1-1/n)^(k-1)= n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

    Text Solution

    |

  12. The coefficient of x^4 in the expansion of {sqrt(1+x^2)-x}^(-1) in asc...

    Text Solution

    |

  13. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+.... is equal to

    Text Solution

    |

  14. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  15. If |x|<1,t h e n1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is ...

    Text Solution

    |

  16. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  17. If |x|<1, then find the coefficient of x^n in the expansion of (1+x+x^...

    Text Solution

    |

  18. If x is positive, the first negative term in the expansion of (1 + x)^...

    Text Solution

    |

  19. If x is so small that x^(3) and higher power of x may neglected, then ...

    Text Solution

    |

  20. If the expansion in power of x of the function (1)/(( 1 - ax)(1 - b...

    Text Solution

    |