Home
Class 12
MATHS
1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6x...

`1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+`.... is equal to

A

x

B

`(1+x)^(1//3)`

C

`(1-x)^(1//3)`

D

`(1-x)^(-1//3)`

Text Solution

Verified by Experts

The correct Answer is:
D

Let, `(1+y)^(n) = 1+1/3x+(1xx4)/(3xx6)x^(2)+(1xx4xx7)/(3xx6xx9)x^(3)+"…."`
`= 1+ny + (n(n-1))/(2!) y^(2) + "….."`
Comparing the terms, we get
`ny = 1/3 x, (n(n-1))/(2!) y^(2) = (1xx4)/(3xx6) x^(2)`
Solving, `n = - 1//3, y = -x` Hence, the given series.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

Find the sum of the series 2/(1xx2)+5/(2xx3)xx2+(10)/(3xx4)xx2^2+(17)/(4xx5)xx2^3+ ton terms.

lim_(nrarroo) Sigma_(r=1)^(n) (r)/(1xx3xx5xx7xx9xx...xx(2r+1)) is equal to

Find the sum 1-1/8+1/8xx3/(16)-(1xx3xx5)/(8xx16xx24)+

Find the sum of infinite series (1)/(1xx3xx5)+(1)/(3xx5xx7)+(1)/(5xx7xx9)+….

Find the sum (1xx2)/(3!)+(2xx2)^2/(4!)+(3xx2)^3/(5!)+....+(20xx2)^30/(22!)

Find the sum 3/(1xx2)xx1/2+4/(2xx3)xx(1/2)^2+5/(3xx4)xx(1/2)^2+ ton terms.

Explain why 7xx11 xx 13 + 13 and 7 xx 6xx 5 xx 4 xx 3 xx 2xx 1 +5 are composite numbers.

Find the value of (18^3+7^3+3xx18xx7xx25)/(3^6+6xx243xx2+15xx18xx4+20xx27xx8+15xx9xx16+6xx3xx32+64)

CENGAGE-BINOMIAL THEOREM-Exercise (Single)
  1. The value of sum(r=0)^(50)(-1)^r(^(50)Cr)/(r+2) is equal to 1/(50xx51)...

    Text Solution

    |

  2. sum(r=0)^(300)ar x^r=(1+x+x^2+x^3)^(100)dot If a=sum(r=0)^(300)ar ,t ...

    Text Solution

    |

  3. sum(r=0)^(300)ar x^r=(1+x+x^2+x^3)^(100)dot If a=sum(r=0)^(300)ar ,t ...

    Text Solution

    |

  4. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  5. Iff(x) =.^(40)C(1).x(1-x)^(39) + 2..^(40)C(2)x^(2)(1-x)^(38)+3..^(40)C...

    Text Solution

    |

  6. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)), then the value of (sumsum)(0l...

    Text Solution

    |

  7. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be 4...

    Text Solution

    |

  8. Show that x^(n) =1 + n(1 -1/x) + (n(n+1))/1.2 (1 -1/x)^(2) + ...

    Text Solution

    |

  9. sum(k=1)^ook(1-1/n)^(k-1)= n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

    Text Solution

    |

  10. The coefficient of x^4 in the expansion of {sqrt(1+x^2)-x}^(-1) in asc...

    Text Solution

    |

  11. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+.... is equal to

    Text Solution

    |

  12. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  13. If |x|<1,t h e n1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is ...

    Text Solution

    |

  14. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  15. If |x|<1, then find the coefficient of x^n in the expansion of (1+x+x^...

    Text Solution

    |

  16. If x is positive, the first negative term in the expansion of (1 + x)^...

    Text Solution

    |

  17. If x is so small that x^(3) and higher power of x may neglected, then ...

    Text Solution

    |

  18. If the expansion in power of x of the function (1)/(( 1 - ax)(1 - b...

    Text Solution

    |

  19. If (x^(2)+x+1)/(1-x) = a(0) + a(1)x+a(2)x^(2)+"….", the b sum(r=1)^(50...

    Text Solution

    |

  20. If (1-x)^(-n)=a0+a1x+a2x^2++ar x^r+ ,t h e na0+a1+a2++ar is equal to (...

    Text Solution

    |