Home
Class 12
MATHS
If the second term of the expansion [a^(...

If the second term of the expansion `[a^(1/(13))+a/(sqrt(a^(-1)))]^n` is `14 a^(5//2)` , then the value of `(^n C_3)/(^n C_2)` is.

Text Solution

Verified by Experts

The correct Answer is:
B

a. We know that
`.^(m)C_(r)+.^(m)C_(r-1)xx.^(n)C_(1)+.^(m)C_(r-2)xx.^(n)C_(2)+"….."+.^(n)C_(r)= .^(m+n)C_(r)`
So, if `m, n gt r` and `m + n lt r`, then
`.^(m)C_(r)+.^(m)C_(r-1)xx.^(n)C_(1)+.^(m)C_(r-2)xx.^(n)C_(2)+"….."+.^(n)C_(r)=0`
b. if `m, n gt r` then
`.^(m)C_(r)+.^(m)C_(r-1)xx.^(n)C_(1)+.^(m)C_(r-2)xx.^(n)C_(2)+"....."+.^(n)C_(r)=.^(m+n)C_(r)`
c. If `m, n lt r lt m + n` then
`.^(m)C_(m) x .^(n)C_(r-m) + .^(m)C_(m-1)xx.^(n)C_(r-m+1)`
`+ .^(m)C_(m-2)xx.^(n)C_(r-m+2)+"...."+.^(m)C_(r-n)xx.^(n)C_(n)=.^(m+n)C_(r)`
d. if `m lt r lt n`
`.^(m)C_(m) xx .^(n)C_(r-m)+.^(m)C_(m-1)xx.^(n)C_(r-m+1) +.^(m)C_(m-2)xx.^(n)C_(r-m+2)+"....."+.^(n)C_(r)=.^(m+n)C_(r)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Numerical)|25 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise JEE Previous Year|16 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

If the constant term in the binomial expansion of (x^2-1/x)^n ,n in N is 15, then the value of n is equal to.

If .^(n+5) P_(n +1) = ((11(n-1))/2) .^(n +3) P_(n) then the value of n are

(i) What is the second term in the expansion of (1 + x)^(n) ? (ii) Write the 3^(rd) and 4^(th) terms in the expansion of (1 + x)^(n) . (iii) If the coefficients of 2^(nd) , 3^(rd) and 4^(th) terms in the expansion of (1 + x)^(n) are in A.P, then show that n^(2) - 9n + 14 = 0 .

If the 4th term in the expansion of (a x+1//x)^n is 5/2, then (a) a=1/2 b. n=8 c. a=2/3 d. n=6

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of ndot

If in the expansion of (x^(3)-(2)/(sqrt(x)))^(n) a term like x^(2) exists and 'n' is a double digit number, then least value of 'n' is

Show that the middle term in the expansion of (1 + x)^(2n) is (1.3.5.........(2n - 1))/(n!)2^(n)x^(n) , where n is a positive integer.