If the second term of the expansion `[a^(1/(13))+a/(sqrt(a^(-1)))]^n`
is `14 a^(5//2)`
, then the value of `(^n C_3)/(^n C_2)`
is.
Text Solution
Verified by Experts
The correct Answer is:
B
a. We know that `.^(m)C_(r)+.^(m)C_(r-1)xx.^(n)C_(1)+.^(m)C_(r-2)xx.^(n)C_(2)+"….."+.^(n)C_(r)= .^(m+n)C_(r)` So, if `m, n gt r` and `m + n lt r`, then `.^(m)C_(r)+.^(m)C_(r-1)xx.^(n)C_(1)+.^(m)C_(r-2)xx.^(n)C_(2)+"….."+.^(n)C_(r)=0` b. if `m, n gt r` then `.^(m)C_(r)+.^(m)C_(r-1)xx.^(n)C_(1)+.^(m)C_(r-2)xx.^(n)C_(2)+"....."+.^(n)C_(r)=.^(m+n)C_(r)` c. If `m, n lt r lt m + n` then `.^(m)C_(m) x .^(n)C_(r-m) + .^(m)C_(m-1)xx.^(n)C_(r-m+1)` `+ .^(m)C_(m-2)xx.^(n)C_(r-m+2)+"...."+.^(m)C_(r-n)xx.^(n)C_(n)=.^(m+n)C_(r)` d. if `m lt r lt n` `.^(m)C_(m) xx .^(n)C_(r-m)+.^(m)C_(m-1)xx.^(n)C_(r-m+1) +.^(m)C_(m-2)xx.^(n)C_(r-m+2)+"....."+.^(n)C_(r)=.^(m+n)C_(r)`.
If the constant term in the binomial expansion of (x^2-1/x)^n ,n in N is 15, then the value of n is equal to.
If .^(n+5) P_(n +1) = ((11(n-1))/2) .^(n +3) P_(n) then the value of n are
(i) What is the second term in the expansion of (1 + x)^(n) ? (ii) Write the 3^(rd) and 4^(th) terms in the expansion of (1 + x)^(n) . (iii) If the coefficients of 2^(nd) , 3^(rd) and 4^(th) terms in the expansion of (1 + x)^(n) are in A.P, then show that n^(2) - 9n + 14 = 0 .
If the 4th term in the expansion of (a x+1//x)^n is 5/2, then (a) a=1/2 b. n=8 c. a=2/3 d. n=6
If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of ndot
If in the expansion of (x^(3)-(2)/(sqrt(x)))^(n) a term like x^(2) exists and 'n' is a double digit number, then least value of 'n' is
Show that the middle term in the expansion of (1 + x)^(2n) is (1.3.5.........(2n - 1))/(n!)2^(n)x^(n) , where n is a positive integer.