Home
Class 12
MATHS
If f(x)=xtan^(-1)x , find f^(prime)(sqrt...

If `f(x)=xtan^(-1)x ,` find `f^(prime)(sqrt(3))` using the first principle.

Text Solution

Verified by Experts

We have
`f'(x)=underset(hrarr0)lim(f(x+h)-f(x))/(h)`
`therefore" "f'(sqrt(3))=underset(hrarr0)lim(f(sqrt(3)+h)-f(sqrt(3)))/(h)`
`=underset(hrarr0)lim((sqrt(3)+h)tan^(-1)(sqrt(3)+h)-sqrt(3)tan^(-1)sqrt(3))/(h)`
`=underset(hrarr0)lim(sqrt(3))/(h)tan^(-1)((sqrt(3+h)-sqrt(3))/(1+sqrt(3)(sqrt(3)+h)))+underset(hrarr0)limtan^(-1)(sqrt(3)+h)`
`=sqrt(3)underset(hrarr0)lim{tan^(-1)((h)/(4+sqrt(3)h))/((h)/(4+sqrt(3)h))}(1)/(4+sqrt(3)h)+underset(hrarr0)limtan^(-1)(sqrt(3)+h)`
`=sqrt(3)xx1xx(1)/(4)+tan^(-1)sqrt(3)=(sqrt(3))/(4)+tan^(-1)sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=xtan^(-1)x , then f'(1) is

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

Find the derivative of e^(sqrt(x)) w.r.t. x using the first principle.

Find the derivative of sqrt(4-x) w.r.t. x using the first principle.

Differentiate f(x)=e^(2x) from first principles.

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f^(prime)(x)=1/(-x+sqrt(x^2+1)) and f(0)=(1+sqrt(2))/2 then f(1) is equal to- (a) log"(sqrt(2)+1) (b) 1 (c) 1+sqrt(2) (d) none of these

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

Find the range of f(X) = tan^(-1)x-(1)/(2)log_(e)x in (1)/(sqrt(3)),(sqrt(3))