Home
Class 12
MATHS
If f(x)=x|x|, then prove that f^(prime)(...

If `f(x)=x|x|,` then prove that `f^(prime)(x)=2|x|`

Text Solution

Verified by Experts

`f(x)=x|x|, ne 0`
`rArr" "f(x)={:{(-x^(2), x lt 0),(x^(2), x gt 0):}`
`rArr" "f'(x)={:{(-2"x,","" x lt 0),(2"x,",""x gt 0):}`
`therefore" "f'(x)=2|x|, x ne 0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

If f(x)=|x+a^2 a b ac a b x+b^2 bc a c b c x+c^2|, t h e n prove that f^(prime)(x)=3x^2+2x(a^2+b^2+c^2)dot

If f(x)=2x^(2)+3x-5 , then prove that f'(0)+3f'(-1)=0

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

Let f(x)a n dg(x) be two differentiable functions in Ra n df(2)=8,g(2)=0,f(4)=10 ,a n dg(4)=8. Then prove that g^(prime)(x)=4f^(prime)(x) for at least one x in (2,4)dot

If f(x)=|x a a a x a a a x|=0, then f^(prime)(x)=0a n df^(x)=0 has common root f^(x)=0a n df^(prime)(x)=0 has common root sum of roots of f(x)=0 is -3a none of these

If f(x)=|x-2|a n dg(x)=f[f(x)],t h e ng^(prime)(x)= ______ for x>2

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4