Home
Class 12
MATHS
The value of sin^(-1)[xsqrt(1-x)-sqrt(x)...

The value of `sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]` is equal to `sin^(-1)x+sin^(-1)sqrt(x)` `sin^(-1)x-sin^(-1)sqrt(x)` `sin^(-1)sqrt(x)-sin^(-1)x` none of these

Text Solution

Verified by Experts

`y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]," where "0lt x lt 1`
`=sin^(-1)[xsqrt(1-(sqrt(x))^(2))-sqrt(x)sqrt(1-x^(2))]`
`=sin^(-1)x-sin^(-1)sqrt(x)`
`[because sin^(-1) x-sin^(-1)y=sin^(-1)(xsqrt(1-y^(2))-ysqrt(1-x^(2)))]`
Differentiating w.r.t.x, we get
`(dy)/(dx)=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-(sqrt(x))^(2)))(d)/(dx)(sqrt(x))`
`=(1)/(sqrt(1-x^(2)))-(1)/(sqrt(1-x))xx(1)/(2sqrt(x))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

(x sin^(-1) x)/(sqrt(1 - x^(2)))

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

Integrate the functions (sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x)),x in[0,1]

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)

Evaluate: int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^2))dxdot