Home
Class 12
MATHS
Let y=x^3-8x+7a n dx=f(t) and (dy)/(dx...

Let `y=x^3-8x+7a n dx=f(t) and (dy)/(dx)=2a n dx=3 at t=0,` then find the value of `(dx)/(dt) at t = 0 `

Text Solution

Verified by Experts

`"Let "y=x^(3)-8x+7`
`therefore" "(dy)/(dx)=3x^(2)-8`
It is given that when t=0, x=3. Therefore, when t=0,
`(dy)/(dx)=3xx3^(2)-8=19`
`"Also ", (dy)/(dx)=(dy//dt)/(dx//dt)`
Since when `t=0, (dy)/(dx)=19 and (dy)/(dt) = 2, from (1)`
`19=(2)/(dx//dt) or (dx)/(dt)=(2)/(19)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let y=e^(x sin x^3)+(t a n x)^x Find (dy)/(dx)

If x = 3 tant and y = 3 sec t, then the value of (d^2y)/(dx^2)" at" t=pi/4 is

Find (d^2y)/(dx^2) if x = at^2 , y=2 "at", t ne 0

If x^3+y^3+3a x y=0 ,f i nd (dy)/(dx)dot

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If y =sin (sin x) and (d^(2)y)/(dx^(2))+(dy)/(dx) tan x + f(x) = 0, then find f(x).

If x y+y^2=tanx+y ,t h e n(dy)/(dx)dot

If the curves a y+x^2=7a n dx^3=y cut orthogonally at (1,1) , then find the value adot