Home
Class 12
MATHS
Let f(x)=(lim)(hvec0)(("sin"(x+h))^(1n(x...

Let `f(x)=(lim)_(hvec0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot` Then `f(pi/2)` equal to 0 (b) equal to 1 In `pi/2` (d) non-existent

Text Solution

Verified by Experts

`"Let "g(x)=(sin x)^(log_(e^(x)))`
`therefore" "f(x)=underset(hrarr0)lim(g(x+h)-g(x))/(h)=g'(x)`
`therefore" "f(x)=g'(x)=(d)/(dx)(e^(log, x. log_(e) sin x))`
`(sin x)^(log_(e)x)((1)/(x)cdotlog_(e) sin x + log_(e) x.(1)/(sin x)cdot cos x)`
`therefore" "f(pi//2)=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(lim)_(h->0)(("sin"(x+h))^(1n(x+h))-(sinx)^(1nx))/hdot Then f(pi/2) equal to (a)0 (b) equal to 1 (c)In pi/2 (d) non-existent

(lim)_(hvec0)((e+h)^(1n(e+h))-e)/hi s____

f(n)=lim_(x->0){(1+sin(x/2))(1+sin(x/2^2)).......(1+sin(x/2^n))}^(1/x) then find lim_(n->oo)f(n)

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then

("lim")_(xvecoo)"{"x+5")"tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to (a) pi (b) 2pi (c) pi/2 (d) none of these

(lim)_(xrarr0)(sin(picos^2x)/(x^2)) is equal to (a) -pi (b) pi (c) pi/2 (d) 1

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

If f(a)=lim_(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2)], then

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to (a) pi/2 (b) -pi (c) pi (d) -pi/2

lim_(x->1)(1-x^2)/(sin2pix) is equal to (a) 1/(2pi) (b) -1/pi (c) (-2)/pi (d) none of these