Home
Class 12
MATHS
If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then...

If `tan^(-1)(sqrt(1+x^2-1))/x=4^0` then

Text Solution

Verified by Experts

`"Let "tan^(-1)((sqrt(1+x^(2)-1))/(x))and v = tan^(-1)x.`
Putting `x=tan theta,` we get
`u=tan^(-1)((sqrt(1+x^(2)-1))/(x))`
`=tan^(-1)((sec theta-1)/(tan theta))`
`=tan^(-1)((1-cos theta)/(sin theta))`
`=tan^(-1)(tan""(theta)/(2))`
`=(1)/(2)theta`
`=(1)/(2)tan^(-1)x`
Thus, we have `u=(1)/(2)tan^(-1)x" and "v=tan^(-1)x`. Therefore,
`(du)/(dx)=(1)/(2)xx(1)/(1+x^(2))and (dv)/(dx)=(1)/(1+x^(2))`
`therefore" "(du)/(dv)=(du//dx)/(dv//dx)=(1)/(2(1+x^(2)))(1+x^(2))=(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) at x=0 is 1/8 (b) 1/4 (c) 1/2 (d) 1

y=tan^(-1)(x/(1+sqrt(1-x^2)))

If u=tan^(-1)""(sqrt(1+x^(2))-1)/x " and " v=tan^(-1)x, " find " (du)/(dv) .

If u = tan^(-1)"" (sqrt ( 1+x^2)-1)/(x) and v = tan^(-1) x , find (du)/(dv)

"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x)w.r.t tan^(-1)x ,w h e r ex!=0.

tan^(- 1)((sqrt(1+a^2x^2)-1)/(a x)) where x!=0, is equal to

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=alpha" then prove that "x^(2)=sin2alpha.