Home
Class 12
MATHS
Find the derivative of f(tanx)wdotrdottg...

Find the derivative of `f(tanx)wdotrdottg(secx)a tx=pi/4,` where `f^(prime)(1)=2a n dg^(prime)(sqrt(2))=4.`

Text Solution

Verified by Experts

`"Let "u=f(tan x) and v=g(sec x).` Therefore,
`(du)/(dv)=f'(tan x) sec^(2)x`
`" and "(dv)/(dx)=g'(sec x) sec x tan x`
`therefore" "(du)/(dv)=(du)/(dx)//(dv)/(dx)=(f'(tan x) sec^(2)x)/(g'(sec x) sec x tan x)`
`"or "[(du)/(dv)]_(x=(pi)/(4))=(f'(tan""(pi)/(4)))/(g'(sec""(pi)/(4))sin""(pi)/(4))=(f'(1)sqrt(2))/(g'(sqrt(2)))`
`=(2sqrt(2))/(4)=(1)/(sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of the following functions: 2tanx-7secx

Find the anti derivative F of f defined by f (x) = 4x^(3) - 6 , where F (0) = 3

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

Suppose fa n dg are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all xa n df^(prime)a n dg' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x))e q u a l (a) (-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

Statement 1: If both functions f(t)a n dg(t) are continuous on the closed interval [1,b], differentiable on the open interval (a,b) and g^(prime)(t) is not zero on that open interval, then there exists some c in (a , b) such that (f^(prime)(c))/(g^(prime)(c))=(f(b)-f(a))/(g(b)-g(a)) Statement 2: If f(t)a n dg(t) are continuou and differentiable in [a, b], then there exists some c in (a,b) such that f^(prime)(c)=(f(b)-f(a))/(b-a)a n dg^(prime)(c)(g(b)-g(a))/(b-a) from Lagranes mean value theorem.

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

Let f(x0 be a non-constant thrice differentiable function defined on (-oo,oo) such that f(x)=f(6-x)a n df^(prime)(0)=0=f^(prime)(x)^2=f(5)dot If n is the minimum number of roots of (f^(prime)(x)^2+f^(prime)(x)f^(x)=0 in the interval [0,6], then the value of n/2 is___