Home
Class 12
MATHS
If x=a (cos t +t sin t)" and "y= a (sin ...

If `x=a (cos t +t sin t)" and "y= a (sin t -t cos t)`, find `(d^(2)y)/(dx^(2))`.

Text Solution

Verified by Experts

It is given that x =a (cos t + t sin t) and
y=a (sin t - t cos t). Therefore,
`(dx)/(dt)=a[-sin t+ sin t + t cos t]= at cos t`
`(dy)/(dt)=a [ cos t -{cos t - t sin t} ] = at sin t`
`therefore" "(dy)/(dx)=(((dy)/(dt)))/(((dx)/(dt)))=(at sin t)/(at cos t)= tan t`
`"Then, "(d^(2)y)/(dx^(2))=(d)/(dx)((dy)/(dx))=(d)/(dx)(tan t)`
`=(d)/(dt) (tan t)(dt)/(dx)`
`=sec^(2) t. (dt)/(dx)`
`sec^(2)t. (1)/(at cos t)`
`(sec^(3) t)/(at)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x =a ( cos t + t sin t), y = a [sin t-t cos t] then find dy/dx .

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

x= 2 cos t -cos 2t ,y=2 sin t-sin 2t Then the value of (d^(2)y)/(dx^(2)) at t=pi/2

Find (dy)/(dx) if x =a ( t - sin t), y =a (1- cos t)

Find (dy )/(dx) if x=a ( t - sin t), y = a (1 - cos t).

If w(x,y,z) =x^(2) + y^(2)+ z^(2), x=e^(t), y=e^(t) sin t and z=e^(t) cos t , find (dw)/(dt) .

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))