Home
Class 12
MATHS
If f (x/y)= f(x)/f(y) ,AA y, f (y)!=0 an...

If `f (x/y)= f(x)/f(y)` ,`AA y, f (y)!=0` and `f' (1) = 2`, find f(x) .

Text Solution

Verified by Experts

`"We have "f((x)/(y))=(f(x))/(f(y))`
Differentiating w.r.t. x, keeping y as constant we get`f'((x)/(y))(1)/(y)=(f'(x))/(f(y))`
Putting x=y, we get
`f'(1)(1)/(x)=(f'(x))/(f(x))`
`rArr" "(f'(x))/(f(x))=(2)/(x)`
Intergrating both sides, we get
`log_(e)f(x)=2log_(e)x+log c`
`rArr" "f(x)=cx^(2)`
In (1), putting x = y = 1, we get f(1) = 1
`therefore" "f(x)=x^(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy f((4x)/y)=f(x)-f(y) for all x,y and f(4e) = 1, then (a) f(x) = In 4x(b) f(x) is bounded (c) lim_(x->0) f(1/x)=0 (d) lim_(x->0)xf(x)=0

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

f:R^+ ->R is a continuous function satisfying f(x/y)=f(x)-f(y) AAx,y in R^+ .If f'(1)=1,then (a)f is unbounded (b) lim_(x->0)f(1/x)=0 (c) lim_(x->0)f(1+x)/x=1 (d) lim_(x->0)x.f(x)=0

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then (a) f(x) is an even function (b) f(x) is an odd function (c) If f(2)=a ,then f(-2)=a (d) If f(4)=b ,then f(-4)=-b

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.