Home
Class 12
MATHS
If Pn is the sum of a GdotPdot upto n te...

If `P_n` is the sum of a `GdotPdot` upto `n` terms `(ngeq3),` then prove that `(1-r)(d P_n)/(d r)=(1-n)P_n+n P_(n-1),` where `r` is the common ratio of `GdotPdot`

Text Solution

Verified by Experts

Let the first term of G.P. be `alpha`. Then
`P_(n)=alpha[(1-r^(n))/(1-r)]`
`(dp_(n))/(dr)=alpha[((1-r)(-nr^(n-1))+(1-r^(n)))/((1-r^())^(2))]`
`therefore" "(1-r)(dP_(n))/(dr)=alpha((-nr^(n-1)+nr^(n))/(1-r))+((1-r^(n))/(1-r))alpha`
`=alphan.((1.r^(n-1)-1+r^(n))/(1-r))+P_(n)`
`=ncdotP_(n-1)-nP_(n)+P_(n)`
`=(1-n)P_(n)+nP_(n-1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Prove ""^(n)P_(r)=""^(n-1)P_(r) +r. ""^(n-1)P_(r-1)

Prove that ""^(n-1)P_r+r^(n-1)p_r-1=^nP_r dot""

If the sum of n terms of a G.P. is 3(3^(n+1))/(4^(2n)) , then find the common ratio.

If the sum of n terms of a G.P. is 3-(3^(n+1))/(4^(2n)) , then find the common ratio.

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of ndot

If r lt s le n " then prove that " ^(n)P_(s) " is divisible by "^(n)P_(r).

If ""^(n)P_(r)=k xx ""^(n-1)P_(r-1) what is k:

Verify the property ""^(n)C_(r)=n/r ""^(n-1)C_(r-1) where n=6 and r=3.