Home
Class 12
MATHS
If g(x)-(f(x))/((x-a)(x-b)(x-c)),w h e r...

If `g(x)-(f(x))/((x-a)(x-b)(x-c)),w h e r ef(x)` is a polynomial of degree `<3,` then prove that `(dg(x))/(dx)=|1af(a)(x-a)^(-2)1bf(b)(x-b)^(-2)1cf(c)(x-c)^(-2)|+|a^2a1b^2b1c^2c1|`

Text Solution

Verified by Experts

By partial fractions, we have
`g(x)= g(x)=(f(a))/((x-a)(a-b)(a-c))+(f(b))/((b-a)(x-b)(b-c))+(f(c))/((b-a)(c-b)(x-c))`
`=(1)/((a-b)(b-c)(c-a))`
`xx[(f(a)(c-b))/((x-a))+(f(b)(a-c))/((x-b))+(f(c)(b-a))/((x-c))]`
`=|{:(1,a,f(a)//(x-a)),(1,b,f( b)//(x-b)),(1,c,f(c)//(x-c)):}|div|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|`
`therefore" "(dg(x))/(dx)=|{:(1,a,-f(a)//(x-a)^(-2)),(1,b,-f( b)//(x-b)^(-2)),(1,c,-f(c)//(x-c)^(-2)):}|div|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|`
`=|{:(1,a,f(a)//(x-a)^(-2)),(1,b,f(b)//(x-b)^(-2)),(1,c,f(c)//(x-c)^(-2)):}|div|{:(a^(2),a,1),(b^(2),b,1),(c^(2),c,1):}|`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If g(x)=(f(x))/((x-a)(x-b)(x-c)) ,where f(x) is a polynomial of degree <3 , then intg(x)dx=|[1,a,f(a)log|x-a|],[1,b,f(b)log|x-b|],[1,c,f(c)log|x-c|]|-:|[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|+k (dg(x))/(dx)=|[1,a,-f(a)(x-a)^(-2)],[1,b,-f(b)(x-b)^(-2)],[1,c,-f(c)(x-c)^(-2)]|:-|[1,a,a^2],[1,b,b^2],[1,c,c^2]|

If int(tan^(9)x)dx=f(x)+log|cosx|, where f(x) is a polynomial of degree n in tan x, then the value of n is

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f'(x)g'(x h '(x)f' '(x)g' '(x h ' '(x)| is a constant polynomial.

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l

If f(x) is an even function and satisfies the relation x^2dotf(x)-2f(1/x)=g(x),w h e r eg(x) is an odd function, then find the value of f(5)dot

Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) are differentiable functions. At some point x_0,F^(prime)(x_0)=21 F(x_0),f^(prime)(x_0)=4f(x_0),g^(prime)(x_0)=-7g(x_0), and h^(prime)(x_0)=kh(x_0) . Then k is________

Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on (-oo,oo) such that f(-pi)=1. The value of |g^n (-pi)| equals __________

Suppose that f(x) isa quadratic expresson positive for all real xdot If g(x)=f(x)+f^(prime)(x)+f^(x), then for any real x(w h e r ef^(prime)(x)a n df^(x) represent 1st and 2nd derivative, respectively). g(x) 0 c. g(x)=0 d. g(x)geq0

If f(x)=x^n ,f(1)+(f^1(1))/1+(f^2(1))/(2!)+(f^n(1))/(n !),w h e r ef^r(x) denotes the rth order derivative of f(x) with respect to x , is

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these