Home
Class 12
MATHS
If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-...

If `y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1`, then prove that `(y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]`

Text Solution

Verified by Experts

`y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+((c+x-c)/(x-c))`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(x)/(x-c)`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx+x(x-b))/((x-b)(x-c))`
`=(ax^(2))/((x-a)(x-b)(x-c))+(x^(2))/((x-b)(x-c))`
`=(ax^(2)+x^(2)(x-a))/((x-a)(x-b)(x-c))`
`=(x^(3))/((x-a)(x-b)(x-c))`
`therefore" "log y= log {(x^(3))/((x-a)(x-b)(x-c))}`
`"or "log y=3log x-{log(x-a)+log(x-b)+log(x-c)}`
On differentiating w.r.t. x, we get
`(1)/(y)(dy)/(dx)=(3)/(x)-{(1)/(x-a)+(1)/(x-b)+(1)/(x-c)}`
`"or "(dy)/(dx)=y{((1)/(x)-(1)/(x-a))+((1)/(x)-(1)/(x-b))+((1)/(x)-(1)/(x-c))}`
`=y{-(a)/(x(x-a))-(b)/(x(x-b))-(c)/(x(x-c))}`
`=(y)/(2){(a)/(a-x)+(b)/(b-x)+(c)/(x-c)}.`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f (x) = |(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0)| then

The quadratic equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 has equal roots if

Simplify (x^(a-b))^(a+b).(x^(b-c))^(b+c).(x^(c-a))^(c+a)

Prove that x^((b-c)/(bc)) x^((c-a)/(ca)) x^((a-b)/(ab))=1

If g(x)=(f(x))/((x-a)(x-b)(x-c)) ,where f(x) is a polynomial of degree <3 , then intg(x)dx=|[1,a,f(a)log|x-a|],[1,b,f(b)log|x-b|],[1,c,f(c)log|x-c|]|-:|[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|+k (dg(x))/(dx)=|[1,a,-f(a)(x-a)^(-2)],[1,b,-f(b)(x-b)^(-2)],[1,c,-f(c)(x-c)^(-2)]|:-|[1,a,a^2],[1,b,b^2],[1,c,c^2]|

If ( x + a) ( x + b ) (x + c ) = x^(3) + 14x^(2) + 59x + 70 , find the value of (1)/(a) + (1)/(b) + (1)/( c )

If y=|{:(f(x),g(x),h(x)),(l,m,n),(a,b,c):}| , prove that (dy)/(dx)=|{:(f'(x),g'(x),h'(x)),(l,m,n),(a,b,c):}| .

If (x+a) (x+b) (x+c) =x^(3) +14x^(2) +59x + 70 , find the value of (i) a+b+c (ii) (1)/(a) +(1)/(b) +(1)/(C ) ( iii) a^(2) +b^(2) +c^(2) (iv) (a)/(bc) +(b)/( ac) +(c )/( ab)

If the roots of (a-b)x^(2)+(b-c)x+(c-a)=0 are equal, prove that 2a=b+c .