Home
Class 12
MATHS
If f((x+y)/3)=(2+f(x)+f(y))/3 for all re...

If `f((x+y)/3)=(2+f(x)+f(y))/3` for all real `xa n dy` and `f^(prime)(2)=2,` then determine `y=f(x)dot`

Text Solution

Verified by Experts

`f((x+y)/(3))=(2+f(x)+f(y))/(3)`
Replacing x by 3x and y by 0, we get
`f(x)=(2+f(3x)+f(0))/(3)`
`"or "f(3x)-3f(x)+2=-f(0)`
In (1) putting x = 0 and y = 0, we get
`f(0)=2`
`"Now, "f'(x)=underset(hrarr0)lim(f(x_+h)-f(x))/(h)`
`=underset(hrarr0)lim(f((3x+3h)/(3))-f(x))/(h)`
`=underset(hrarr0)lim((2+f(3x)+f(3h))/(3)-f(x))/(h)`
`underset (hrarr0)lim(f(3x)-3f(x)+f(3h)+2)/(3h)`
`=underset(hrarr0)lim(f(3h)-f(0))/(3h)" [from (2)]"`
`=f'(x)=c`
`therefore" "f'(x)=c`
`"At "x=2,f'(2)=c=2" (Given )"`
`therefore" "f'(x)=2`
Integrating bout sides, we get
`f(x)=2x+d" [From (2)]"`
`therefore" "d=2`
Hence, f(x)=2x+2.
Alternative method:
`f((x+y)/(3))=(2+f(x)+f(y))/(3)" (1)"`
Differentiating w.r.t. x keeping as constant, we get
`f'((x+y)/(3))(1)/(3)=(f'(x))/(3)`
Put x = 2 and y = 3x -2. Then
f'(x)=2
Integrating, we get `f(x)=2x+c.`
Now, put x=y=0 in (1). Then 3 f (0)= 2 + 2 f(0)`
`"or " f(0)=2`
`"Hence, "f(x)=2x+2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

Let f((x+y)/2)=(f(x)+f(y))/2fora l lr e a lxa n dy If f^(prime)(0) exists and equals -1a n df(0)=1,t h e n f i n d f(2)dot

Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all positive real numbers xa n dydot If f(30)=20 , then find the value of f(40)dot

Let f: RvecR be a function satisfying condition f(x+y^3)=f(x)+[f(y)]^3 for all x ,y in Rdot If f^(prime)(0)geq0, find f(10)dot

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot

f(x+y)=f(x).f(y) for all x,yinR and f(5)=2,f'(0)=3 then f'(5) is equal to