Home
Class 12
MATHS
If f(x)=(f(x))/y+(f(y))/x holds for all ...

If `f(x)=(f(x))/y+(f(y))/x` holds for all real `x` and `y` greater than `0a n df(x)` is a differentiable function for all `x >0` such that `f(e)=1/e ,t h e nfin df(x)dot`

Text Solution

Verified by Experts

We have
`f(xy)=(f(x))/(y)+(f(y))/(x)" for all "x, y gt0`
`"or "f(1)=f(1)+f(1)" [Putting x=y=1]"`
`"or "f(1)=0`
Now, f(x) is differentiable for all x `gt`0. Therefore,
`f'(x)=underset(hrarr0)lim(f(x+h)-f(x))/(h)`
`=underset(hrarr0)lim(f{x(1+(h)/(x))}-f(x))/(h)`
`=underset(hrarr0)lim((f(x))/(1+(h)/(x))+(f(1+(h)/(x)))/(x)-f(x))/(h)`
`=underset(hrarr0)lim(((-h)/(x)f(x))/(1+(h)/(x))+(f(1+(h)/(x)))/(x))/(h)`
`=-(f(x))/(x)+underset(hrarr0)lim(f(1+(h)/(x)))/(hx)`
`=-(f(x))/(x)+(1)/(x^(2))underset(hrarr0)lim(f(1+(h)/(x)))/((h)/(x))`
`=(-f(x))/(x)+(A)/(x^(2))," where "A=underset(hrarr0)lim(f(1+(h)/(x)))/((h)/(x))`
`therefore" "(d)/(dx)(f(x))=-(f(x))/(x)=(A)/(x^(2))`
`"or "(d)/(dx)(f(x))+(f(x))/(x)=(A)/(x^(2))`
`"or "x(d)/(dx)(f(x))+f(x)=(A)/(x)`
`"or "(d)/(dx)[xf(x)]=(A)/(x)`
`"or "xf(x)=Alog_(e)x+log C" [On integration]"`
Putting x=1, we get
`f(1)=A log_(e)1+log C`
`"or "0=logC" "[becausef(1)=0]`
`"or "xf(x)=A log_(e)x`
Putting x=e, we get
`ef(e)=A log_(e)e`
`"or "A=1" "[becausef(e)=(1)/(e)]`
`therefore" "xf(x)=log_(e)x`
`"or "f(x)(log_(e)x)/(x)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If f:RR-> RR is a differentiable function such that f(x) > 2f(x) for all x in RR and f(0)=1, then

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

If f: R^+vecR ,f(x)+3xf(1/x)=2(x+1),t h e nfin df(x)dot

If f(x) is a polynomial function satisfying f(x)dotf(1/x)=f(x)+f(1/x) and f(4)=65 ,t h e nfin df(6)dot

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.

Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real x and ydot If f(x) is differentiable and f^(prime)(0) exists for all real permissible value of a and is equal to sqrt(5a-1-a^2)dot Then a) f(x) is positive for all real x b) f(x) is negative for all real x c) f(x)=0 has real roots d) Nothing can be said about the sign of f(x)

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot