Home
Class 12
MATHS
Suppose p(x)=a0+a1x+a2x^2++an x^ndot If ...

Suppose `p(x)=a_0+a_1x+a_2x^2++a_n x^ndot` If `|p(x)|lt=e^(x-1)-1|` for all `xgeq0,` prove that `|a_1+2a_2++n a_n|lt=1.`

Text Solution

Verified by Experts

`"Given "p(x)=a_(0)+a_(1)x+ax^(2)+...+an^(x^(n))`
`therefore" "f'(x)=0+a_(1)+2a_(2)x+...+na_(n)x^(n-1)`
`"or "p'(1)=a_(1)+2a_(2)+...+na_(n)" (1)"`
`"Now, "|p(x)|le|e^(x-1)-1|`
`therefore" "|p(1)|le0" "(because|e^(1-1)-1|=|e^(0)-1|=|1-1|=0)`
`"or "p(1)=0" "[therefore|p(1)|ge0]`
As `|p(x)|le|e^(x-1)-1|`,we get
`|p(1+h)|le|e^(h)-1|AAh gt-1, h ne0`
`"or "|p(1+h)-p(1)|le|e^(h-1)|`
`"or "|(p(1+h)-p(1))/(h)|le|(e^(h)-1)/(h)|`
Taking limit as `hrarr0`, we get
`underset(hrarr0)lim|(p(1+h)-p(1))/(h)|leunderset(hrarr0)lim|(e^(h)-1)/(h)|`
`"or "|p'(1)|le1`
`"or "|a_(1)+2a_(2)+...+na_(n)|le|"`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If |a_1sinx+a_2sin2x++a_nsinn x|lt=|sinx| for x in R , then prove that |a_1+2a_1+3a+3+n a_n|lt=1

Show that 1+x ln (x+sqrt(x^2+1))geqsqrt(1+x^2) for all xgeq0.

If (1+x+x^2++x^p)^n=a_0+a_1x+a_2x^2++a_(n p)x^(n p), then find the value of a_1+2a_2+3a_3+ddot+n pa_(n p)dot

If P(1)=0a n d(d P(x))/(dx)gtP(x) , for all xge1 . Prove that P(x)>0 for all x>1.

Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

Let f(x)=a_0+a_1x+a_2x^2++a_n x^n+ and (f(x))/(1-x)=b_0+b_1x+b_2x^2++b_n x^n+ , then b_n+b_(n-1)=a_n b. b_n-b_(n-1)=a_n c. b_n//b_(n-1)=a_n d. none of these

If sum_(r=0)^n{a_r(x-alpha+2)^r-b_r(alpha-x-1)^r}=0, then prove that b_n-(-1)^n a_n=0.

Let P(x)=a_0+a_1x^2+a_2x^4++a_n x^(2n) be a polynomial in a real variable x with 0

Let n be a positive integer and (1+x+x^2)^n=a_0+a_1x++a^(2n)x^(2n)dot Show that a_0^2-a_1^ 2+a_2^ 2++'a_2n' x^2=a_ndot