Home
Class 12
MATHS
If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t...

If `x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2))` then `(dy)/(dx)` at ` t=2`………….

Text Solution

Verified by Experts

The correct Answer is:
`(4)/(3)`

`(dx)/(dt)=((1+t^(2))2-2txx2t)/((1+t^(2))^(2))=(2-2t^(2))/((1+t^(2))^(2))`
`(dy)/(dt)((1+t^(2))(-2t)-(1-t^(2))2t)/((1+t^(2))^(2))=(-4t)/((1+t^(2))^(2))`
`therefore" "(dy)/(dx)=(dy//dt)/(dx//dt)=(-4t)/(2-2t^(2))=(2t)/((1+t^(2))^(2))`
`"or "(dy)/(dx):|_(t=2)=(4)/(3)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)) " then " (dy)/(dx) is

If e^x=(sqrt(1+t)-sqrt(1-t))/(sqrt(1+t)+sqrt(1-t))a n dtany/2=sqrt((1-t)/(1+t)) ,then (dy)/(dx) at t=1/2 is (a) -1/2 (b) 1/2 (c) 0 (d) none of these

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

Find the derivatives of the following : x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2))

Find the equation of tangent and normal to the curve x=(2a t^2)/((1+t^2)),y=(2a t^3)/((1+t^2)) at the point for which t=1/2dot

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) non of these

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is