Home
Class 12
MATHS
min[(x1-x^2)^2+(3+sqrt(1-x1 2)-sqrt(4x2)...

`min[(x_1-x^2)^2+(3+sqrt(1-x1 2)-sqrt(4x_2))],AAx_1,x_2 in R ,` is `4sqrt(5)+1` (b) `3-2sqrt(2)` `sqrt(5)+1` (d) `sqrt(5)-1`

A

`4sqrt(1)`

B

`3-2sqrt(2)`

C

`sqrt(5)+1`

D

`sqrt(5)-1`

Text Solution

Verified by Experts

The correct Answer is:
B

(2) Let `y_(1)=3+sqrt(1-x_(1)^(2))andy_(2)=sqrt(4x_(2))`
`orx_(1)^(2)+(y_(1)-3)^(2)=1andy_(2)^(2)=4x_(2)`
Thus, `(x_(1),y_(1))` lies on the circle `x^(2)+(y-3)^(2)=1`.
Also, `(x_(2),y_(2))` lies on the upper half of the parabola `y^(2)=4x`.
Thus, the given expression is square of the shortest distance between the curves `x^(2)+(y-3)^(2)=1andy^(2)=4x`.
Now, the shortest distance always occurs along the common normal to the curves and the normal to the circle passes through the center of the circle.
Normal to the parabola `y^(2)=4x" is "y-mx-2m-m^(3)`. It passes through (0,3).
Therefore, `m^(3)+2m+3=0`, which has only one root, m=-1.
Hence, the required minimum distance is `sqrt(1+1)-1=sqrt(2)-1`.
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    CENGAGE|Exercise Exercise (Multiple)|26 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise (Comprehension)|41 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise 5.7|9 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|4 Videos

Similar Questions

Explore conceptually related problems

min[(x_1-x_2)^2+(3+sqrt(1-x_1^2)-sqrt(4x_2))^2],AAx_1,x_2 in R , is (a) 4sqrt(5)+1 (b) 3-2sqrt(2) (c) sqrt(5)+1 (d) sqrt(5)-1

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greatest integer function, is (a) (-sqrt(3/2),sqrt(3/2)) (b) (-sqrt(3/2),-1)uu(-sqrt(5/2),sqrt(5/2)) (c) (-sqrt(5/2),sqrt(5/2)) (d) (-sqrt(5/2),-1)uu(1,sqrt(5/2))

int_(-1)^(1/2)(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))i se q u a lto (sqrt(e))/2(sqrt(3)+1) (b) (sqrt(3e))/2 sqrt(3e) (d) sqrt(e/3)

(1)/(sqrt(x^(2)- 4 x + 5 ))

(1)/(sqrt(x^(2) + 4x + 2 ))

If f(x)=3sqrt(1−x^2)​+3sqrt(1−x^2)​, then f(x) is

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

If x ,y in R satify the equation x^2+y^2-4x-2y+5=0, then the value of the expression [(sqrt(x)-sqrt(y))^2+4sqrt(x y)]//(x+sqrt(x y)) is a. sqrt(2)+1 b. (sqrt(2)+1)/2 c. (sqrt(2)-1)/2 d. (sqrt(2)+1)/(sqrt(2))

lim_(xto oo)(sqrt(4x^(2)+2x+1)-sqrt(4x^(2)+1)) is

CENGAGE-PARABOLA-Exercise (Single)
  1. about to only mathematics

    Text Solution

    |

  2. If line P Q , where equation is y=2x+k , is a normal to the parabola w...

    Text Solution

    |

  3. min[(x1-x^2)^2+(3+sqrt(1-x1 2)-sqrt(4x2))],AAx1,x2 in R , is 4sqrt(5)...

    Text Solution

    |

  4. If the normals to the parabola y^2=4a x at three points (a p^2,2a p), ...

    Text Solution

    |

  5. Normals A O ,AA1a n dAA2 are drawn to the parabola y^2=8x from the poi...

    Text Solution

    |

  6. If the normals to the parabola y^2=4a x at the ends of the latus rectu...

    Text Solution

    |

  7. From a point (sintheta,costheta), if three normals can be drawn tot he...

    Text Solution

    |

  8. If the normals at P(t(1))andQ(t(2)) on the parabola meet on the same p...

    Text Solution

    |

  9. If the normals to the parabola y^2=4a x at P meets the curve again at ...

    Text Solution

    |

  10. PQ is a normal chord of the parabola y^2= 4ax at P,A being the vertex ...

    Text Solution

    |

  11. P, Q, and R are the feet of the normals drawn to a parabola (y−3)^2=8(...

    Text Solution

    |

  12. Normals at two points (x1y1)a n d(x2, y2) of the parabola y^2=4x meet ...

    Text Solution

    |

  13. The endpoints of two normal chords of a parabola are concyclic. Then ...

    Text Solution

    |

  14. If normal at point P on the parabola y^2=4a x ,(a >0), meets it again ...

    Text Solution

    |

  15. The set of points on the axis of the parabola (x-1)^2=8(y+2) from wher...

    Text Solution

    |

  16. Tangent and normal are drawn at the point P-=(16 ,16) of the parabola ...

    Text Solution

    |

  17. From the point (15, 12), three normals are drawn to the parabola y^2=4...

    Text Solution

    |

  18. The line x-y=1 intersects the parabola y^2=4x at A and B . Normals at ...

    Text Solution

    |

  19. If normal are drawn from a point P(h , k) to the parabola y^2=4a x , t...

    Text Solution

    |

  20. The circle x^2+y^2+2lambdax=0,lambda in R , touches the parabola y^2=...

    Text Solution

    |