Home
Class 12
MATHS
PQ is any focal chord of the parabola y^...

PQ is any focal chord of the parabola `y^(2)=8`x. Then the length of PQ can never be less than _________ .

Text Solution

Verified by Experts

The correct Answer is:
8

(8) The length of focal chord having one extremity `(at^(2),2at)` is
`a(t+(1)/(t))^(2)`
`because|r+(1)/(t)|ge2`
we get `(t+(1)/(t))ge4a=8`
or Length of focal chord 8
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    CENGAGE|Exercise JEE Main Previous Year|8 Videos
  • PARABOLA

    CENGAGE|Exercise JEE Advenced Single Answer Type|18 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|4 Videos

Similar Questions

Explore conceptually related problems

If P S Q is a focal chord of the parabola y^2=8x such that S P=6 , then the length of S Q is (a)6 (b) 4 (c) 3 (d) none of these

If the point P(4, -2) is the one end of the focal chord PQ of the parabola y^(2)=x, then the slope of the tangent at Q, is

Let PQ be a focal chord of the parabola y^(2)=4ax . The tangents to the parabola at P and Q meet at point lying on the line y=2x+a,alt0 . If chord PQ subtends an angle theta at the vertex of y^(2)=4ax , then tantheta=

The length of focal chord to the parabola y^(2)=12x drawn from the point (3,6) on is __________ .

The vertex of the parabola x^(2)=8y-1 is :

The latus rectum of the parabola y^2 = 11x is of length

Let PQ be a focal chord of the parabola y^2 = 4ax The tangents to the parabola at P and Q meet at a point lying on the line y = 2x + a, a > 0 . Length of chord PQ is

If (2,-8) is at an end of a focal chord of the parabola y^2=32 x , then find the other end of the chord.

The focal chord of the parabola y^2=a x is 2x-y-8=0 . Then find the equation of the directrix.

If AFB is a focal chord of the parabola y^(2) = 4ax such that AF = 4 and FB = 5 then the latus-rectum of the parabola is equal to

CENGAGE-PARABOLA-Exercise (Numerical)
  1. Consider the locus of center of the circle which touches the circle x^...

    Text Solution

    |

  2. If on a given base BC[B(0,0) and C(2,0)], a triangle is described such...

    Text Solution

    |

  3. PQ is any focal chord of the parabola y^(2)=8x. Then the length of PQ ...

    Text Solution

    |

  4. The length of focal chord to the parabola y^(2)=12x drawn from the poi...

    Text Solution

    |

  5. From the point (-1,2), tangent lines are to the parabola y^(2)=4x. If ...

    Text Solution

    |

  6. Line y=2x-b cuts the parabola y=x^(2)-4x at points A and B. Then the v...

    Text Solution

    |

  7. A line through the origin intersects the parabola 5y=2x^(2)-9x+10 at t...

    Text Solution

    |

  8. If the circle (x-6)^(2)+y^(2)=r^(2) and the parabola y^(2)=4x have max...

    Text Solution

    |

  9. The slope of line which belongs to family (1+ l) x + (1-l)y + 2(1-l) =...

    Text Solution

    |

  10. If 3x+4y+k=0 represents the equation of tangent at the vertex of the ...

    Text Solution

    |

  11. Normals at (x(1),y(1)),(x(2),y(2))and(x(3),y(3)) to the parabola y^(2)...

    Text Solution

    |

  12. Foot of perpendicular from point P on the parabola y^(2)=4ax to the ax...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If the length of the latus rectum rectum of the parabola 169{(x-1)^(2)...

    Text Solution

    |

  16. If the line x+y=6 is a normal to the parabola y^(2)=8x at point (a,b),...

    Text Solution

    |

  17. Consider the locus of center of the circle which touches the circle x^...

    Text Solution

    |

  18. Line y=2x-b cuts the parabola y=x^(2)-4x at points A and B. Then the v...

    Text Solution

    |

  19. A line through the origin intersects the parabola 5y=2x^(2)-9x+10 at t...

    Text Solution

    |

  20. If 3x+4y+k=0 represents the equation of tangent at the vertex of the ...

    Text Solution

    |