Home
Class 12
MATHS
If P is any arbitrary point on the ci...

If `P` is any arbitrary point on the circumcirlce of the equllateral trangle of side length `l` units, then `| vec P A|^2+| vec P B|^2+| vec P C|^2` is always equal to `2l^2` b. `2sqrt(3)l^2` c. `l^2` d. `3l^2`

A

`2l^(2)`

B

`2sqrt3l^(2)`

C

`l^(2)`

D

`3l^(2)`

Text Solution

Verified by Experts

The correct Answer is:
a

Let P.V. of A,B and C be `vecp, veca, vecb and vecc`
respectively, and `O(vec0)` be the circumcentre of equilateral traingle ABC. Then
`|vecP| = |vecb| = |veca|= |vecc| = l/ sqrt3`
Now `|vec(PA)|^(2) = |veca - vecp|^(2)= |veca|^(2) + |vecp|^(2) - 2vecp`
` and |vecPC|^(2) = |vecc|^(2) + |vecp|^(2) - 2vecp. vecc`
` Rightarrow sum|vec(PA)|^(2) = 6. l^(2)/3 - 2vecp . (veca + vecb + vecc)`
` 2l^(2) (as veca + vecb + vecc//3 = vec0)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos

Similar Questions

Explore conceptually related problems

If vec ra n d vec s are non-zero constant vectors and the scalar b is chosen such that | vec r+b vec s| is minimum, then the value of |b vec s|^2+| vec r+b vec s|^2 is equal to a. 2| vec r|^2 b. | vec r|^2//2 c. 3| vec r""|^2 d. |r|^2

vec a , vec b , vec c are three coplanar unit vectors such that vec a+ vec b+ vec c=0. If three vectors vec p , vec q ,a n d vec r are parallel to vec a , vec b ,a n d vec c , respectively, and have integral but different magnitudes, then among the following options, | vec p+ vec q+ vec r| can take a value equal to a. 1 b. 0 c. sqrt(3) d. 2

vec a , vec b ,a n d vec c are three vectors of equal magnitude. The angel between each pair of vectors is pi//3 such that | vec a+ vec b+ vec c|=6. Then | vec a| is equal to 2 b. -1 c. 1 d. sqrt(6)//3

If C_1: x^2+y^2=(3+2sqrt(2))^2 is a circle and P A and P B are a pair of tangents on C_1, where P is any point on the director circle of C_1, then the radius of the smallest circle which touches c_1 externally and also the two tangents P A and P B is 2sqrt(3)-3 (b) 2sqrt(2)-1 2sqrt(2)-1 (d) 1

If in a right-angled triangle A B C , the hypotenuse A B=p ,then vec(AB).vec(AC)+ vec(BC). vec(BA)+ vec(CA).vec(CB) is equal to 2p^2 b. (p^2)/2 c. p^2 d. none of these

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If A ,B ,C ,D are four distinct point in space such that A B is not perpendicular to C D and satisfies vec A Bdot vec C D=k(| vec A D|^2+| vec B C|^2-| vec A C|^2-| vec B D|^2), then find the value of kdot

Let vec a=2i+j-2ka n d vec b=i+jdot If vec c is a vector such that vec adot vec c=| vec c|,| vec c- vec a|=2sqrt(2) between vec axx vec b and vec ci s30^0,t h e n|( vec axx vec b)xx vec c| I equal to a. 2//3 b. 3//2"" c. 2 d. 3

If vec r_1, vec r_2, vec r_3 are the position vectors of the collinear points and scalar p a n d q exist such that vec r_3=p vec r_1+q vec r_2, then show that p+q=1.

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. Resolved part of vector veca and along vector vecb " is " veca1 and th...

    Text Solution

    |

  2. Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hat...

    Text Solution

    |

  3. If P is any arbitrary point on the circumcirlce of the equllateral ...

    Text Solution

    |

  4. If vec ra n d vec s are non-zero constant vectors and the scalar b...

    Text Solution

    |

  5. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  6. Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb...

    Text Solution

    |

  7. The position vectors of the vertices A ,Ba n dC of a triangle are t...

    Text Solution

    |

  8. If a is real constant A ,Ba n dC are variable angles and sqrt(a^2-4)ta...

    Text Solution

    |

  9. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |

  10. A non-zero vector vec a is such that its projections along vectors...

    Text Solution

    |

  11. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |

  12. In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d ...

    Text Solution

    |

  13. In fig. 2.33 AB, DE and GF are parallel to each other and AD, BG and E...

    Text Solution

    |

  14. A unit vector veca in the plane of vecb=2hati+hatj and vecc=hati-hatj+...

    Text Solution

    |

  15. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D a...

    Text Solution

    |

  16. Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] deno...

    Text Solution

    |

  17. If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vec...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. If vecd=vecaxxvecb+vecbxxvecc+veccxxveca is a on zero vector and |(vec...

    Text Solution

    |

  20. If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(veca...

    Text Solution

    |