Home
Class 12
MATHS
Position vector hat k is rotated about ...

Position vector ` hat k` is rotated about the origin by angle `135^0` in such a way that the plane made by it bisects the angel between ` hat ia n d hatjdot` Then its new position is `+-( hat i)/(sqrt(2))+-( hat j)/(sqrt(2))` b. `+-( hat i)/2+-( hat j)/2-( hat k)/(sqrt(2))` c. `( hat i)/(sqrt(2))-( hat k)/(sqrt(2))` d. none of these

A

`+-hati/sqrt2+-hatj/sqrt2`

B

`+-hati/2+-hatj/2-hatk/sqrt2`

C

`hati/sqrt2-hatk/sqrt2`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
d

Let `vecr` be the new position . Then `vecr= lambdahatk + mu ( hati + hatj) `
` Also, vecr.hatk = - 1/sqrt2 Rightarrow lambda= - 1/sqrt2`
` Also lambda^(2)+ 2mu^(2) = 1 Rightarrow 2mu^92) = 1/2 or mu = +- 1/2`
` vecr = +- 1/2 (hati + hatj) =- hatk/sqrt2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos

Similar Questions

Explore conceptually related problems

Position vector hat k is rotated about the origin by angle 135^0 in such a way that the plane made by it bisects the angle between hat ia n d hatjdot Then its new position is a. +-( hat i)/(sqrt(2))+-( hat j)/(sqrt(2)) b. +-( hat i)/2+-( hat j)/2-( hat k)/(sqrt(2)) c. ( hat i)/(sqrt(2))-( hat k)/(sqrt(2)) d. none of these

Vector vec a in the plane of vec b=2 hat i+ hat ja n d vec c= hat i- hat j+ hat k is such that it is equally inclined to vec ba n d vec d where vec d= hat j+2 hat kdot The value of vec a is a. ( hat i+ hat j+ hat k)/(sqrt(2)) b. ( hat i- hat j+ hat k)/(sqrt(3)) c. (2 hat i+ hat j)/(sqrt(5)) d. (2 hat i+ hat j)/(sqrt(5))

The unit vector which is orthogonal to the vector 5 hat j+2 hat j+6 hat k and is coplanar with vectors 2 hat i+ hat j+ hat ka n d hat i- hat j+ hat k is (2 hat i-6 hat j+ hat k)/(sqrt(41)) b. (2 hat i-3 hat j)/(sqrt(13)) c. (3 hat i- hat k)/(sqrt(10)) d. (4 hat i+3 hat j-3 hat k)/(sqrt(34))

If side vec A B of an equilateral trangle A B C lying in the x-y plane 3 hat i , then side vec C B can be -3/2( hat i-sqrt(3) hat j) b. -3/2( hat i-sqrt(3) hat j) c. -3/2( hat i+sqrt(3) hat j) d. 3/2( hat i+sqrt(3) hat j)

A unit vector parallel to the intersection of the planes vec rdot( hat i- hat j+ hat k)=5a n d vec rdot(2 hat i+ hat j-3 hat k)=4 a. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) b. (-2 hat i+5 hat j-3 hat k)/(sqrt(38)) c. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) d. (-2 hat i-5 hat j-3 hat k)/(sqrt(38))

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

A non-zero vector vec a is such that its projections along vectors ( hat i+ hat j)/(sqrt(2)),(- hat i+ hat j)/(sqrt(2)) and hat k are equal, then unit vector along vec a is (sqrt(2) hat j- hat k)/(sqrt(3)) b. ( hat j-sqrt(2) hat k)/(sqrt(3)) c. (sqrt(2))/(sqrt(3)) hat j+( hat k)/(sqrt(3)) d. ( hat j- hat k)/(sqrt(2))

Find the angle between the vectors hat i - 2 hat j + 3 hat k and 3 hat i - 2 hat j + hat k .

The angle between i+j line of the intersection of the plane vec rdot( hat i+2 hat j+3 hat k)=0a n d vec rdot(3 hat i+3 hat j+ hat k)=0 is a. cos^(-1)(1/3) b. c0s^(-1)(1/(sqrt(3))) c. cos^(-1)(2/(sqrt(3))) d. none of these

The unit vector orthogonal to vector hat i+ hat j+2 hat k and making equal angles with the x and y-axis a. +-1/3(2 hat i+2 hat j- hat k) b. +-1/3( hat i+ hat j- hat k) c. +-1/3(2 hat i-2 hat j- hat k) d. none of these

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. The vertex A triangle A B C is on the line vec r= hat i+ hat j+lambda...

    Text Solution

    |

  2. A non-zero vector vec a is such that its projections along vectors...

    Text Solution

    |

  3. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |

  4. In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d ...

    Text Solution

    |

  5. In fig. 2.33 AB, DE and GF are parallel to each other and AD, BG and E...

    Text Solution

    |

  6. A unit vector veca in the plane of vecb=2hati+hatj and vecc=hati-hatj+...

    Text Solution

    |

  7. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D a...

    Text Solution

    |

  8. Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot] deno...

    Text Solution

    |

  9. If veca is parallel to vecb xx vecc, then (veca xx vecb) .(veca xx vec...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. If vecd=vecaxxvecb+vecbxxvecc+veccxxveca is a on zero vector and |(vec...

    Text Solution

    |

  12. If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(veca...

    Text Solution

    |

  13. If the two diagonals of one its faces are 6 hat i+6 hat ka n d4 hat ...

    Text Solution

    |

  14. The volume of a tetrahedron fomed by the coterminus edges veca , vecb ...

    Text Solution

    |

  15. If veca ,vecb and vecc are three mutually orthogonal unit vectors , th...

    Text Solution

    |

  16. Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec b...

    Text Solution

    |

  17. Given veca=xhati+yhatj+2hatk,vecb=hati-hatj+hatk , vecc=hati+2hatj, ve...

    Text Solution

    |

  18. Let veca=a(1)hati+a(2)hatj+a(3)hatk,vecb=b(2)hatj+b(3)hatk and vecc=c(...

    Text Solution

    |

  19. Let vecr, veca, vecb and vecc be four non-zero vectors such that vecr....

    Text Solution

    |

  20. If veca, vecb and vecc are such that [veca vecb vecc] =1, vecc= lambda...

    Text Solution

    |