Home
Class 12
MATHS
If a( vecalphaxx vecbeta)+b( vecbetaxx v...

If `a( vecalphaxx vecbeta)+b( vecbetaxx vecgamma)+c( vecgammaxx vecalpha)=0` and at least one of `a ,ba n dc` is nonzero, then vectors ` vecalpha, vecbetaa n d vecgamma` are a. parallel b. coplanar c. mutually perpendicular d. none of these

A

parallel

B

coplanar

C

mutually perpendicular

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
b

Taking dot product of `a (vecalpha xx vecbeta) + b(vecbeta xx vecgamma) + c(vecgamma xx vecalpha) = 0 " with " vecgamma , vecalpha and vec beta` respectively.
we have
` a [vecalpha vecbeta vecgamma] =0`
`b [ vecalpha vecbeta vecgamma] =0`
`c[vecalpha vecbeta vecgamma] =0`
since at least one of a,b and c `ne 0`. we have
` [vecalpha vecbeta vecgamma ]= 0`
Hence `vecalpha, vecgamma , and vecgamma ` are coplanar.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos

Similar Questions

Explore conceptually related problems

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then (a) vec a , vec b ,a n d vec c can be coplanar (b) vec a , vec b ,a n d vec c must be coplanar (c) vec a , vec b ,a n d vec c cannot be coplanar (d)none of these

If ( vec axx vec b)xx( vec cxx vec d)dot( vec axx vec d)=0 , then which of the following may be true? a. vec a , vec b , vec ca n d vec d are necessarily coplanar b. vec a lies in the plane of vec ca n d vec d c. vec b lies in the plane of vec aa n d vec d d. vec c lies in the plane of vec aa n d vec d

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]

If vec A O+ vec O B= vec B O+ vec O C , then A ,Bn a dC are (where O is the origin) a. coplanar b. collinear c. non-collinear d. none of these

if vecalpha||( vecbetaxx vecgamma) , then ( vecalphaxxbeta)dot( vecalphaxx vecgamma) equals to | vecalpha|^2( vecbetadot vecgamma) b. | vecbeta|^2( vecgammadot vecalpha) c. | vecgamma|^2( vecalphadot vecbeta) d. | vecalpha|| vecbeta|| vecgamma|

Let vecalpha=a hat i+b hat j+c hat k , vecbeta=b hat i+c hat j+a hat ka n d vecgamma=c hat i+a hat j+b hat k are three coplanar vectors with a!=b ,a n d vec v= hat i+ hat j+ hat kdot Then v is perpendicular to vecalpha b. vecbeta c. vecgamma d. none of these

The pair of lines whose direction cosines are given by the equations 3l+m+5n=0a n d6m n-2n l+5l m=0 are a. parallel b. perpendicular c. inclined at cos^(-1)(1/6) d. none of these

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. Then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecb))...

    Text Solution

    |

  2. If veca .vecb =beta and veca xx vecb = vecc ," then " vecb is

    Text Solution

    |

  3. If a( vecalphaxx vecbeta)+b( vecbetaxx vecgamma)+c( vecgammaxx vecalph...

    Text Solution

    |

  4. If veca xx vecb = vecb xx vecc ne 0 where veca , vecb and vecc are co...

    Text Solution

    |

  5. If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and...

    Text Solution

    |

  6. A vector of magnitude 10 along the normal to the curve 3x^2+8x y+2y...

    Text Solution

    |

  7. If veca and vecb are two unit vectors inclined at an angle pi//3 then ...

    Text Solution

    |

  8. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  9. If veca+vecb ,vecc are any three non- coplanar vectors then the equa...

    Text Solution

    |

  10. Sholve the simultasneous vector equations for vecx aedn vecy: vecx+vec...

    Text Solution

    |

  11. The condition for equations vec rxx vec a= vec ba n d vec rxx vec c...

    Text Solution

    |

  12. If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2h...

    Text Solution

    |

  13. If veca=2hati + hatj+ hatk, vecb= hati+ 2hatj + 2hatk,vecc = hati+ hat...

    Text Solution

    |

  14. Let (veca (x) = (sin x) hati+ (cos x) hatj and vecb(x) = (cos 2x) hati...

    Text Solution

    |

  15. For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( vec...

    Text Solution

    |

  16. If veca,vecb and vecc are three non coplanar vectors and vecr is any v...

    Text Solution

    |

  17. If vecP = (vecbxxvecc)/([vecavecbvecc]),vecq=(veccxxveca)/([veca vecb ...

    Text Solution

    |

  18. A (veca), B (vecb) and C (vecc) are the vertices of triangle ABC and R...

    Text Solution

    |

  19. If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is ...

    Text Solution

    |

  20. If V be the volume of a tetrahedron and V ' be the volume of another...

    Text Solution

    |