Home
Class 12
MATHS
Statement 1: vecA=2hati + 3hatj + 6hatk ...

Statement 1: `vecA=2hati + 3hatj + 6hatk , vecB=hati + hatj - 2hatk and vecC=hati + 2hatj + hatk` then
`|vecAxx (vecAxx(vecAxxvecB)).vecC|= 243`
Statement 2: `|vecAxx(vecAxx(vecAxxvecB)).vecC|=|vecA|^(2)|[vecA vecB vecC]|`

A

Both the statements are true and statement 2 is the correct explanation for statement 1.

B

Both statements are true but statement 2 is not the correct explanation for statement 1.

C

Statement 1 is true and Statement 2 is false

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
d

`vecA xx (vecA.vecB) vecA- (vecA.vecA) vecB) .vecC`
`(=underset("zero")ubrace(vecAxx(vecA.vecB)vecA)-(vecA.vecA)xxvecB).vecC`
`=-|vecA|^(2)[vecA vecB vecC]`
now ` |vecA|^(2) = 4+9 + 36 = 49`
`[vecA vecB vecC]=|{:(2,3,6),(1,1,-2),(1,2,1):}|`
2( 1+4) -1 (3 -12) +1 (-6-6)
= 10 +9 -12 =7
`|vecA|^(2) [vecAvecBvecC]|= 49xx 7 = 343`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos

Similar Questions

Explore conceptually related problems

If veca=xhati + y hatj + zhatk, vecb= yhati + zhatj + xhatk and vecc= zhati + xhatj+ yhatk ,, " then " vecaxx (vecbxx vecc) is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=3hati-2hatj+hatk and vecb=2hati-4hatj+hatk then find |veca-2vecb|.

If veca=2hati+3hatj-hatk, vecb= -hati+2hatj-4hatk, vec c =hati+hatj+hatk , then find the value of (veca xx vecb)*(veca xx vec c) .

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find (veca xx vecb)xxvec c

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find veca xx (vecb xx vec c)

Given veca = 2hati + hatj - 8 hatk and vecb = hati + 3hatj - 4hatk then |veca + vecb| = ……………………… .

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr...

    Text Solution

    |

  2. Statement 1: If a(1)hati + a(2)hatj + a(3)hatk, b(1)hati+b(2)hatj + b(...

    Text Solution

    |

  3. Statement 1: vecA=2hati + 3hatj + 6hatk , vecB=hati + hatj - 2hatk and...

    Text Solution

    |

  4. Statement 1: veca, vecb and vecc are three mutually perpendicular unit...

    Text Solution

    |

  5. Consider three vectors veca , vecb and vecc Statement 1: vecaxxvecb ...

    Text Solution

    |

  6. Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + ...

    Text Solution

    |

  7. Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + ...

    Text Solution

    |

  8. Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + ...

    Text Solution

    |

  9. Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 w...

    Text Solution

    |

  10. vertors vecx , vecy and vecz each of magnitude sqrt2 , make an angle ...

    Text Solution

    |

  11. vertors vecx , vecy and vecz each of magnitude sqrt2 , make an angle ...

    Text Solution

    |

  12. If vecx xx vecy=veca, vecy xx vecz=vecb, vecx.vecb=gamma, vecx.vecy=1 ...

    Text Solution

    |

  13. Find the derivative of y = cos^-1(1 − x).

    Text Solution

    |

  14. Find the derivative of y = sin^-1(1 − x^2).

    Text Solution

    |

  15. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  16. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  17. Given two orthogonal vectors vecA and VecB each of length unity. Let v...

    Text Solution

    |

  18. Find the derivative of y=cos 2x^6.

    Text Solution

    |

  19. Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vec...

    Text Solution

    |

  20. Find the derivative of y=2sin 3x+5 cos 3x^4.

    Text Solution

    |