Home
Class 12
MATHS
Let veca=alphahati+2hatj- 3hatk, vecb=ha...

Let `veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vecc = 2hati - alphahatj + hatk`. Find the value of `6 alpha`. Such that `{(vecaxxvecb)xx(vecbxx vecc)}xx(veccxxveca)=0`

Text Solution

Verified by Experts

The correct Answer is:
4

`veca=alphahati+2hati-3hatk,vecb=hati+2alphahati-2hatk,`
`vecc= 2hati - alphahatj + hatk {(veca xx vecb) xx (vecb xx vecc)}xx (vecc xx veca)=vec0`
`or {[veca vecb vecc] vecb-[veca vecbvecb]vecc}xx (veccxxveca)=0`
`or [veca vecb vecc] vecb xx (vecc xx veca)=vec0`
`or [veca vecb vecc] ((veca.vecb)vecc- (vecb.vecc)veca)=vec0`
`[ veca vecb vecc] =0 ` ( `veca and vecc` are not collinear)
`Rightarrow |{:(alpha,2,-3),(1,2alpha,-2),(2,-alpha,1):}|`
`or alpha(2alpha - 2alpha) -2(1+4) -3 (-alpha - 4alpha)=0`
`or 10 -15 alpha=0`
`alpha 2//3`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos

Similar Questions

Explore conceptually related problems

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of (lamda -4) .

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find (veca xx vecb)xxvec c

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj-hatk, vecb= -hati+2hatj-4hatk, vec c =hati+hatj+hatk , then find the value of (veca xx vecb)*(veca xx vec c) .

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find veca xx (vecb xx vec c)

If veca=hati-2hatj+3hatk, vecb=2hati+hatj-2hatk, vec c=3hati+2hatj+hatk , find veca*(vecb xx vec c) .

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. Find the absolute value of parameter t for which the area of the ...

    Text Solution

    |

  2. Ifveca=a(1)hati+a(2)hatj+a(3)hatk, vecb= b(1)hati+b(2)hatj + b(3)hatk,...

    Text Solution

    |

  3. Let veca=alphahati+2hatj- 3hatk, vecb=hati+ 2alphahatj - 2hatk and vec...

    Text Solution

    |

  4. If vec x , vec y are two non-zero and non-collinear vectors satisf...

    Text Solution

    |

  5. Let vec u a n d vec v be unit vectors such that vec uxx vec v+ vec u...

    Text Solution

    |

  6. The volume of the tetrahedronwhose vertices are the points with positi...

    Text Solution

    |

  7. Given that vec u= hat i-2 hat j+3 hat k ; vec v=2 hat i+ hat j+4 hat k...

    Text Solution

    |

  8. Let a three dimensional vector vec V satisfy the condition, 2 vec ...

    Text Solution

    |

  9. If veca, vecb,vecc are unit vectors such that veca.vecb = 0= veca.vecc...

    Text Solution

    |

  10. Let vec O A- vec a , vec O B=10 vec a+2 vec ba n d vec O C= vec b ,w ...

    Text Solution

    |

  11. Find the work done by the force F=3 hat i- hat j-2 hat k acting on a...

    Text Solution

    |

  12. from a point O inside a triangle ABC, perpendiculars, OD, OE and OF ar...

    Text Solution

    |

  13. A(1),A(2), …. A(n) are the vertices of a regular plane polygon with n ...

    Text Solution

    |

  14. If c is a given non - zero scalar, and vecA and vecB are given non- ze...

    Text Solution

    |

  15. If A, B , C ,D are any four points in space, prove that |vec(AB)xx ve...

    Text Solution

    |

  16. If vectors veca, vecb and vecc are coplanar, show that |{:(veca, vecb,...

    Text Solution

    |

  17. Let vec A=2 vec i+ vec k , vec B= vec i+ vec j+ vec kdot Determine a ...

    Text Solution

    |

  18. Determine the value of c so that for all real x , vectors c x hat i-6 ...

    Text Solution

    |

  19. Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(v...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |