Home
Class 12
MATHS
Let veca,vecb,and vecc be three non-co...

`Let veca,vecb,and vecc` be three non-coplanar ubit vectors such the angle between every pair of them is `(pi)/(3). if vecaxxvecb+vecbxxvecc=pveca+qvecb+rvecc,` where p,q and r are scalars , then the value of `(p^(2)+2q^(2)+r^(2))/(q^(2))` is

Text Solution

Verified by Experts

Given that `veca ,vecb and vecc` are three unit vectors inclined at an angle `theta` with each other.
Also `veca , vecb and vecc` are non-coplanar, therefore,
`[veca vecb vecc] ne 0`
Also given that `veca xx vecb + vecb xx vecc d= pvec + qvecb + rvecc`
taking dot product on both sides with `veca`. we get
`p + q costheta + r cos theta= [veca vecbvecc]`
Similarly m taking dot product on both sides with `vecb and vecc` we get , respectively.
`p costheta+q+r cos theta=0`
`and p cos theta + q cos theta+r[veca vecb vecc]`
Adding (i), (ii) and (iii) we get
`p+q+r= (2[veca vecbvecc])/(2costheta+1)`
Multiplying (iv) by `cos theta` and subtraching (i) from it, we get
`p(cos theta-1)= (2[veca vecbvecc]costheta)/(2costheta+1)-[veca vecb vecc]`
`or (-[veca vecb vecc])/(2costheta+1)`
`or P= ([veca vecb vecc])/((1-cos theta) (1+2 cos theta))`
Similarly, (iv), `xx cos theta - ` (ii) gives
`r(cos theta-1)=(2[veca vecb vecc]costheta)/(2costheta+1)-[veca vecb vecc]`
`or r= (-[veca vecbvecc])/((2costheta+1)(costheta-1))`
But we have to find p,q and r in terms of `theta` only, so let us find the value of `[veca vecb vecc]`
we know that
`[veca vecb vecc]^(2)=|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vec c),(vecc.veca,vecc.vecb,vecc.vecc):}|= |{:(1,costheta,costheta),(costheta,1,cos theta),(cos theta,cos theta,1):}|`
On operating `C_(1) to C_(1) + C_(2)+C_(3)`, we get
`|{:(1+2costheta,costheta,costheta),(1+2costheta,1,costheta),(1+2costheta,costheta,1):}|=(1+2costheta)|{:(1,costheta,cos theta),(1,1,costheta),(1,cos theta,1):||`
Operating `R_(1) to R_(1)-R_(2)and R_(2) to R_(2)- R_(3)`, we get
`(1+2costheta)|{:(0,costheta-1,0),(0,1-costheta,costheta),(1,cos theta,1):}|`
Expanding along `C_(1)`
`(1 + 2cos theta) (1-cos theta)^(2)`
`[veca vecb vecc] = (1-cos theta) sqrt(1+2costheta)`
thus , we get
`P= 1/(sqrt(1+2costheta)),q= (-2costheta)/(sqrt(1+2costheta)),`
`r=1/(sqrt(1+2cos theta))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos

Similar Questions

Explore conceptually related problems

Let vec a, vec b, and vec c be three non coplanar unit vectors such that the angle between every pair of them is pi/3 . If vec a xx vec b+ vecb xx vec x=p vec a + q vec b + r vec c where p,q,r are scalars then the value of (p^2+2q^2+r^2)/(q^2) is

Let veca, vecb , vecc be three vectors of equal magnitude such that the angle between each pair is pi/3 . If |veca + vecb + vecc| = sqrt6 , " then " |veca|=

If veca,vecb,vecc be unit vectors such that veca.vecb=veca.vecc=0 and the angle between vecb and vecc is pi//6 . Prove that veca=pm2(vecbxxvecc)

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

Let veca,vecb,vecc be unit vectors such that veca.vecb=veca.vecc=0 and the angle between vecb and vecc is (pi)/(3). Prove that veca=+-(2)/(sqrt(3))(vecbxxvecc).

If veca, vecb,vecc are unit vectors such that veca.vecb = 0= veca.vecc and the angle between vecb and vecc is pi//3 then the value of |vecaxxvecb -veca xx vecc| is

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(v...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. Let veca,vecb,and vecc be three non-coplanar ubit vectors such the ...

    Text Solution

    |

  4. If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+ve...

    Text Solution

    |

  5. For any two vectors vecu and vecv prove that (1+|vecu|^2(1+|vecv|^20=(...

    Text Solution

    |

  6. Find the derivative of y = 3 cos^-1(x^2 + 0.5).

    Text Solution

    |

  7. find three- dimensional vectors, vecv1, vecv2 and vecv3 "satisfying "v...

    Text Solution

    |

  8. Let V be the volume of the parallelepied formed by the vectors, veca ...

    Text Solution

    |

  9. vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, be...

    Text Solution

    |

  10. If veca, vecb,vecc and vecd are distinct vectors such that veca xx v...

    Text Solution

    |

  11. P1n dP2 are planes passing through origin L1a n dL2 are two lines o...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. Let vecA , vecB and vecC be vectors of legth , 3,4and 5 respectively. ...

    Text Solution

    |

  14. The unit vector perendicular to the plane determined by P (1,-1,2) ,C(...

    Text Solution

    |

  15. the area of the triangle whose vertices are A ( 1,-1,2) , B ( 1,2, -1)...

    Text Solution

    |

  16. If [veca, vecb, vecc]=1 then the value of (veca.(vecbxxvecc))/((ve...

    Text Solution

    |

  17. If vecA = ( 1,1,1) and vecC= (0, 1,-1) are given vectors the vector ve...

    Text Solution

    |

  18. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  19. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  20. A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + ve...

    Text Solution

    |