Home
Class 12
MATHS
find three- dimensional vectors, vecv1, ...

find three- dimensional vectors, `vecv1, vecv2 and vecv3 "satisfying "vecv_(1) .vecv_(2) = -2, vecv_(1). Vecv_(3) = 6 , vecv_(2) , vecv_(2) = 2 vecv_(2) . Vecv_(3) = -5, vecv_(3) .vecv_(3) = 29`

Text Solution

Verified by Experts

Given data are insufficient to uniquely determine the three vectors as there are only six equations involving nine variable.
Therefore, we can obtain infinite number of sets of three vectors, `vecv_(1),vecv_(2) and vecv_(3)` ,satisfying these conditions,
from the given data, we get
`vecv_(1).vecv_(2)=4Rightarrow |vecv_(1)|=2`
`vecv_(2).vecv_(2)=2 Rightarrow|vecv_(2)|=sqrt2`
`vecv_(3).vecv_(3) =29Rightarrow |vecv_(3)|=sqrt29`
Also `vecv_(1).vecv_(2)=-2`
` Rightarrow |v_(1)||v_(2)| cos theta=-2`
(where `theta` is the angle between `vecv_(1) and vecv_(2)`)
`or cos theta = (-1)/sqrt2`
`or theta-135^(@)`
Since any two vectors are always coplanar, let us suppose that `vecv_(1) and vecv_(2)` are in the x-y plane. Let `vecv_(1) ` be along the possitive direaction of the x-axis. then
`vecv_(1) = - hati +- hatj`
As `vecv_(2)` makes an angle `135^(@)` with `vecv_(1)` and lies in the x-y plane, also keeping in mind `|vecv_(2)| = sqrt2` we obtain
`vecv_(2) =-hati +- hatj`
Again let `vecv_(3) = alphahati + betahatj + gammahatk`
`vecv_(3) .vecv_(1)=6 Rightarrow2 alpha=6or alpha=3`
`and vecv_(3).vecv_(2)=-5 Rightarrow alpha+- beta=-5 or beta=+-2`
Also `|vecv_(3)|=sqrt29Rightarrowalpha^(2)+beta^(2)+gamma^(2)=29`
`Rightarrow gamma=+-4`
Hence `vecv_(3)=3hati+-2hatj+-34hatk`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos

Similar Questions

Explore conceptually related problems

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

find 3- dimensional vectors overset(to)(v)_(1) , overset(to)(v)_(2), overset(to)(v)_(3) satisfying overset(to)(v)_(1).overset(to)(v)_(1) =4, overset(to)(v)_(1).overset(to)(v)_(2)=-2overset(to)(v)_(1).overset(to)(v)_(3)-6 overset(to)(v)_(2).overset(to)(v)_(2)=2,overset(to)(v)_(2).overset(to)(v)_(3) =-5 , overset(to)(v)_(3).overset(to)(v)_(3)=29

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

If the vectors veca and vecb are perpendicular to each other then a vector vecv in terms of veca and vecb satisfying the equations vecv.veca=0, vecv.vecb=1 and [(vecv. vecaxx vecb)]=1 is

For any two vectors vecu and vecv prove that (1+|vecu|^2(1+|vecv|^20=(1-vecu.vecc)^2+|vecu+vecv+vecuxxvec|^2

vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, beta and gamma are the angles between vecu and vecu, vecv and vecw and vecw and vecu , respectively and vecx , vecy and vecz are unit vectors along the bisectors of the angles alpha, beta and gamma. respectively, prove that [vecx xx vecy vecy xx vecz vecz xx vecx) = 1/16 [ vecu vecv vecw]^(2) sec^(2) alpha/2 sec^(2) beta/2 sec^(2) gamma/2 .

If vecV=2vec i+ vec(j) - vec(k) " and " vec(W) = vec(i) + 3vec(k) . if vec (U) is a unit vectors then the maximum value of the scalar triple product [vec(U) , vec(V) , vec(W)] is

Let vecu, vecv and vecw be vector such that vecu+vecv+vecw=vec0 . If |vecu|=3, |vecv|=4 and |vecw|=5 then vecu.vecv+vecv.vecw+vecw.vecu is ………………….. .

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. For any two vectors vecu and vecv prove that (1+|vecu|^2(1+|vecv|^20=(...

    Text Solution

    |

  2. Find the derivative of y = 3 cos^-1(x^2 + 0.5).

    Text Solution

    |

  3. find three- dimensional vectors, vecv1, vecv2 and vecv3 "satisfying "v...

    Text Solution

    |

  4. Let V be the volume of the parallelepied formed by the vectors, veca ...

    Text Solution

    |

  5. vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, be...

    Text Solution

    |

  6. If veca, vecb,vecc and vecd are distinct vectors such that veca xx v...

    Text Solution

    |

  7. P1n dP2 are planes passing through origin L1a n dL2 are two lines o...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Let vecA , vecB and vecC be vectors of legth , 3,4and 5 respectively. ...

    Text Solution

    |

  10. The unit vector perendicular to the plane determined by P (1,-1,2) ,C(...

    Text Solution

    |

  11. the area of the triangle whose vertices are A ( 1,-1,2) , B ( 1,2, -1)...

    Text Solution

    |

  12. If [veca, vecb, vecc]=1 then the value of (veca.(vecbxxvecc))/((ve...

    Text Solution

    |

  13. If vecA = ( 1,1,1) and vecC= (0, 1,-1) are given vectors the vector ve...

    Text Solution

    |

  14. Let vecb= 4 hati + 3hatj and vecc be two vectors perpendicular to each...

    Text Solution

    |

  15. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  16. A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + ve...

    Text Solution

    |

  17. A non-zero vector veca is parallel to the line of intersection of the ...

    Text Solution

    |

  18. if vecb and vecc are mutually perpendicular unit vectors and veca is a...

    Text Solution

    |

  19. let veca , vecb and vecc be three vectors having magnitudes 1, 1 and 2...

    Text Solution

    |

  20. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |