Home
Class 12
MATHS
If veca = hatj + sqrt3hatk vecb= - hatj ...

If `veca = hatj + sqrt3hatk` `vecb= - hatj + sqrt3 hatk and vecc = 2sqrt3 hatk` form a triangle , then the internal angle of the triangle between `veca and vecb` is _______

Text Solution

Verified by Experts

`veca.vecb = -1 + 3=2`
`|veca|=2,|vecb|=2`
` cos tehta = 2/(2xx2) = 1/2`
` theta= pi/3 ` but its value is `(2pi)/3` as it is opposite to the side of maximum length.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DETERMINANTS

    CENGAGE|Exercise All Questions|268 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos

Similar Questions

Explore conceptually related problems

If veca' = hati + hatj, vecb'= hati - hatj + 2hatk nad vecc' = 2hati - hatj + hatk then the altitude of the parallelepiped formed by the vectors, veca, vecb and vecc having baswe formed by vecb and vecc is ( where veca' is recipocal vector veca )

If veca=7hati-4hatj-4hatk and vecb=-2hati-hatj+2hatk , determine vector vecc along the internal bisector of the angle between vectors veca and vecb such that |vecc|= 5sqrt6 .

If veca= hati +hatj, vecb= hatj + hatk, vecc = hatk + hati then in the reciprocal system of vectors veca, vecb, vecc reciprocal veca of vector veca is

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Check whether the three vectors 2hati+2hatj+3hatk, vecb=-3hati+3hatj+2hatk and vecc=3hati+4hatk form a triangle or not.

If the sides of an angle are given by vectors veca=hati-2hatj+2hatk and vecb=2hati+hatj+2hatk , then find the internal bisector of the angle.

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. A, B C and D are four points in a plane with position vectors, veca, v...

    Text Solution

    |

  2. If vecA=lamda(vecuxxvecv)+mu(vecvxxvecw)+nu(vecwxxvecu) and [vecu vecv...

    Text Solution

    |

  3. If veca = hatj + sqrt3hatk vecb= - hatj + sqrt3 hatk and vecc = 2sqrt3...

    Text Solution

    |

  4. If veca,vecb,vecc be unit vectors such that veca.vecb=veca.vecc=0 and ...

    Text Solution

    |

  5. If vecx.veca=0 , vecx.vecb=0 , vecx.vecc=0 and vecxnevec0 ...

    Text Solution

    |

  6. for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc...

    Text Solution

    |

  7. The scalar vecA.(vecB+vecC)xx(vecA+vecB+vecC) equals (A) 0 (B) [vecA v...

    Text Solution

    |

  8. For non zero vectors veca,vecb, vecc |(vecaxxvecb).vecc|=|veca||vecb...

    Text Solution

    |

  9. The volume of he parallelepiped whose sides are given by vec O A=2...

    Text Solution

    |

  10. If veca , vecb , vecc are three non-coplanar vector and vecp...

    Text Solution

    |

  11. Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit ...

    Text Solution

    |

  12. If veca, vecb, vecc are three non - coplanar vector such that vecaxx(v...

    Text Solution

    |

  13. Let vecu, vecv and vecw be vector such that vecu+vecv+vecw=vec0. If |v...

    Text Solution

    |

  14. If veca, vecb and vecc1 are three non-coplanar vectors, then (veca + v...

    Text Solution

    |

  15. vec p , vec q ,a n d vec r are three mutually perpendicular vectors of...

    Text Solution

    |

  16. Let veca=2vecj+vecj-2veck,vecb=veci+vecj. If vecc is a vector such tha...

    Text Solution

    |

  17. Let vec a=2i+j+k , vec b=i+2j-k and a unit vector vec c be coplanar....

    Text Solution

    |

  18. If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively...

    Text Solution

    |

  19. Consider the vectors, vec(a),vec(b),vec(c),vec(d) such that (vec(a)xxv...

    Text Solution

    |

  20. If veca, vecb and vecc are unit coplanar vectors , then the scalar tri...

    Text Solution

    |