Home
Class 12
MATHS
A function f: RvecR satisfies the equati...

A function `f: RvecR` satisfies the equation `f(x+y)=f(x)f(y)` for all`x , y in Ra n df(x)!=0fora l lx in Rdot` If `f(x)` is differentiable at `x=0a n df^(prime)(0)=2,` then prove that `f^(prime)(x)=2f(x)dot`

Text Solution

Verified by Experts

We have f(x+y) =f(x)f(y) for all `x, y in R`
`therefore" "f(0)=f(0)f(0) or f(0) {f(0)-1}=0`
`or" "f(0)=1" "[becausef(0)ne0]`
Now, f'(0)=2
`or" "underset(hrarr0)lim(f(0+h)-f(0))/(h)=2`
`or" "underset(hrarr0)lim(f(h)-1)/(h)=2" "(becausef(0)=1)" (1)"`
`"Now, "f'(x)=underset(hrarr0)lim(f(x+h)-f(x))/(h)`
`=underset(hrarr0)lim(f(x)f(h)-f(x))/(h)" "[becausef(x+y)=f(x)f(y)]`
`=f(x)(underset(hrarr0)lim(f(h)-1)/(h))=2f(x)" [Using (1)]"`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

A function f: R -> R satisfy the equation f (x)f(y) - f (xy)= x+y for all x, y in R and f(y) > 0 , then

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

A function f:RtoR is such that f(x+y)=f(x).f(y) for all x.y inR and f(x)ne0 for all x inR . If f'(0)=2 then f'(x) is equal to

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.

A function f: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(y)+2. If differentiable on R-{0}a n df(2)=5,f^(prime)(x)=(f(x)-1)/xdotlambdat h e nlambda= 2^(prime)f(1) b. 3f^(prime)(1) c. 1/2f^(prime)(1) d. f^(prime)(1)

Let f: R->R satisfying |f(x)|lt=x^2,AAx in R be differentiable at x=0. Then find f^(prime)(0)dot

If for a function f : R to R f (x +y ) =F(x ) + f(y) for all x and y then f(0) is

f(x+y)=f(x).f(y) for all x,yinR and f(5)=2,f'(0)=3 then f'(5) is equal to