Home
Class 12
MATHS
Find (dy)/(dx) for y=sin(x^2+1)dot...

Find `(dy)/(dx)` for `y=sin(x^2+1)dot`

Text Solution

Verified by Experts

`"Let "y= sin(x^(2)+1).`
Putting `u=x^(2)+1," we get y sin u"`
`therefore" "(dy)/(dx)=cos u and (du)/(dx) = 2x`
`"Now, "(du)/(dx)=(dy)/(du).(du)/(dx)`
`= (cos u) (2x)=2x cos(x^(2)+1)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=sin^(-1)(cosx), where x in (0,2pi)dot

Find (dy)/(dx) if y =e^(x) sin 2x

(dy)/(dx) = sin^(-1)x

Find dy/dx if y = sin x^(@)

Find (dy)/(dx) for y=log(x+sqrt(a^2+x^2))dot

Find (dy)/(dx)," if "y= sin^(-1)x +sin^(-1)sqrt(1-x^(2)), 0 lt x lt 1 .

Find (dy)/(dx) if y = tan^(-1)(x^(2)) .

Find (dy)/(dx) if x^2 + y^2 =1 .

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

Find (dy)/(dx) if x^(2)+y^(2)=1