Home
Class 12
MATHS
If cos y= x cos (a+y), with cos a ne pm ...

If `cos y= x cos (a+y)`, with `cos a ne pm 1`, prove that `(dy)/(dx)=(cos^(2)(a+y))/(sin a)`.

Text Solution

Verified by Experts

Given relation is cos y= x cos (a+y). Therefore,
`x=(cos y)/(cos (a+y))`
`(dx)/(dy)=(d)/(dy)(cos y)/(cos (a+y))`
`=(( cos (a+y)(-sin y)-cos y (-sin (a+y)))/(cos^(2) (a+y)))`
`=((-cos (a+y) sin y + cos y sin (a+y))/(cos^(2) (a+y)))`
`=((sin (a+y-y))/(cos^(2)(a+y)))`
`=(sin a)/(cos^(2) (a+y))`
`therefore" "(dy)/(dx)=(cos^(2)(a+y))/(sin a)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If cos y = x cos (a+y) Then prove that (dy)/(dx) = (cos^(2) (a+y))/(sin a ) , cosa ne +-1

Solve (dy)/(dx) = cos(x+y)

If y= 5 cos x-3 sin x , prove that (d^(2)y)/(dx^(2))+y=0 .

Solve (dy)/(dx)=cos(x+y)-sin(x+y) .

If y=(sin(x+a))/(cosx) , then prove that (dy)/(dx)=(cosa)/(cos^(2)x) .

If cos ( xy) = x , show that (dy)/(dx) = -((1+ y sin (xy)))/(x sin xy)

If y= A sin x+ B cos x , then prove that (d^(2)y)/(dx^(2))+y=0 .

If x=e^(cos2t) and y=e^(sin2t) , prove that (dy)/(dx)=-(ylogx)/(xlogy)

If x = cos alpha + i sin alpha , y = cos beta + i sin beta , prove that x^(m)y^(n)+1/(x^m y^n) = 2 cos (m alpha + n beta) .

y - cos y = x : (y sin y + cos y + x)y' = y