Home
Class 12
MATHS
Differentiate y=(e^x)/(1+sinx)...

Differentiate `y=(e^x)/(1+sinx)`

Text Solution

Verified by Experts

Using quotient rule, we have
`(dy)/(dx)=(d)/(dx)((e^(x))/(1+ sin x))`
`=((1+ sin x)cdot(d)/(dx)(e^(x))-e^(x)cdot(d)/(dx)(1+ sin x))/(1+ sin x )^(2)`
`=((1+sin x)cdote^(x)-e^(x)cdot(0 + cos x))/((1+ sin x)^(2))=(e^(x)(1+ sin x - cos x))/((1+ sin x )^(2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Differentiate : y=e^x cos x

Differentiate : y = e^(sin 2x)

Differentiate y=cos^4 4x

Differentiate y=cos^3(2x) .

Differentiate y = sin(x^2 + 3) .

Differentiate y = (x − cos^2x)^4