Home
Class 12
MATHS
If cos y= x cos (a+y), with cos a ne pm ...

If `cos y= x cos (a+y)`, with `cos a ne pm 1`, prove that `(dy)/(dx)=(cos^(2)(a+y))/(sin a)`.

Text Solution

Verified by Experts

Given relation is cos y = x cos (a+y). Therefore,
`x=(cos y)/(cos (a+y))`
Differentaiting w.r.t.y, we get
`(dx)/(dy)=(d)/(dy)((cos y)/(cos (a+y)))`
`=((cos (a+y)(-sin y)- cos y (-sin (a+y)))/(cos^(2)(a+y)))`
`=((-cos (a+y) sin y + cos y sin (a+y))/(cos^(2) (a+y)))`
`=((sin (a+y-y))/(cos^(2)(a+y)))=(sin a)/(cos^(2)(a+y))`
`therefore" "(dy)/(dx)=(cos^(2)(a+y))/(sin a)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos