Home
Class 12
MATHS
If sqrt(x) +sqrt(y)=4,then (dx)/(dy)at ...

If `sqrt(x)` +`sqrt(y)=4,then (dx)/(dy)at y=1.`

Text Solution

Verified by Experts

We have `sqrt(x)+sqrt(y)=4`
Differentiating the given equation both sides w.r.t.x, we get
`(1)/(2sqrt(x))+(d)/(dx)(sqrt(y))=0`
`rArr(1)/(2sqrt(x))+((d)/(dy)(sqrt(y)))(dy)/(dx)=0`
`rArr(1)/(2sqrt(x))+(1)/(2sqrt(y))cdot(dy)/(dx)=0`
`rArr(dy)/(dx)=-(sqrt(y))/(sqrt(x))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(sinx+y),then (dy)/(dx)dot

For the curve sqrt(x) + sqrt(y) = 1 , (dy)/(dx) " at " ((1)/(4) , (1)/(4)) is

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a) (e^(sqrt(x)))/(2sqrt(x)) (b) (e^(sqrt(x))-e^(-sqrt(x)))/(2x) 1/(2sqrt(x))sqrt(y^2-4) (d) 1/(2sqrt(x))sqrt(y^2+4)

If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)) ,then (dy)/(dx) is equal to (a) (a y)/(xsqrt(a^2-x^2)) (b) (a y)/(sqrt(a^2-x^2)) (c) (a y)/(xsqrt(a^2-x^2)) (d) none of these

If y(x)=int_(pi^2/16)^(x^2)(cosxcossqrt(theta))/(1+sin^2sqrt(theta)),then (dy)/(dx) at x=pidot is

Let y=sqrt(x+sqrt(x+sqrt(x+oo))) , (dy)/(dx) is equal to (a) 1/(2y-1) (b) x/(x+2y) (c) 1/(sqrt(1+4x) (d) y/(2x+y)

Solve the differential equation [(e^-(2sqrt(x)))/sqrt(x)-(y)/(sqrt(x))](dx)/(dy)=1(xne0).

If y=sqrt(x+sqrt(y+sqrt(x+sqrt(y+oo)))),t h e np rov et h a t(dy)/(dx)=(y^2-x)/(2y^3-2x y-1)

y = sqrt(xsqrt(x^(2)sqrt(x^(3)sqrt(x^(4)sqrt(x^(5).....oo))))), then (dy/dx) at x = 2 is equal to

If y=sqrt(logx+sqrt(logx+sqrt(logx+oo))),t h e n(dy)/(dx)i s (a) x/(2y-1) (b) x/(2y+1) (c) 1/(x(2y-1)) (d) 1/(x(1-2y))