Home
Class 12
MATHS
If x=e^(cos2t) and y=e^(sin2t) , prove t...

If `x=e^(cos2t)` and `y=e^(sin2t)` , prove that `(dy)/(dx)=-(ylogx)/(xlogy)`

Text Solution

Verified by Experts

`x=e^(cos2t)and y=e^(sin 2t)`
` cos 2t= log x and sin 2t = log y`
`therefore" "cos^(2) 2t +sin^(2) 2t = (log x)^(2) + (log y)^(2)`
`rArr" "(log x)^(2)+(log y)^(2)=1`
Differentiating both sides w.r.t. x, we get
`2log x(1)/(x)+2 log y (1)/(y)(dy)/(dx)=0`
`rArr" "(dy)/(dx)=(-y log x)/(x log y)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

Solve (dy)/(dx)+2y=e^(-x)

If y= 3e^(2x)+2e^(3x) , prove that (d^(2)y)/(dx^(2))-5(dy)/(dx)+6y=0 .

Solve the equation (dy)/(dx)+1/x=(e^y)/(x^2)

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))

If y=(sin(x+a))/(cosx) , then prove that (dy)/(dx)=(cosa)/(cos^(2)x) .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .