Home
Class 12
MATHS
If y= cos^(-1) x, Find (d^(2)y)/(dx^(2))...

If `y= cos^(-1) x`, Find `(d^(2)y)/(dx^(2))` in terms of y alone.

Text Solution

Verified by Experts

`y=cos^(-1)x,`
`"or "x=cos y`
Differentiating w.r.t. y, we get
`(dx)/(dy)=-sin y`
`"or "(dy)/(dx)=-cosec y`
Differentiating w.r.t. x, we get
`(d^(2)y)/(dx^(2))=(d)/(dx)(-cosec y)`
`=(d)/(dy)=(-"cosec "y)(dy)/(dx)`
`="cosec y cot y (-cosec y)"`
`-cot ycdot cosec^(2) y`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (d^(2)y)/(dx^(2)) , if y= x^(3)+ tan x .

Find (d^2y)/(dx^2)" if "x^2+y^2=4 .

Find (d^2y)/(dx^2) if x = at^2 , y=2 "at", t ne 0

If y = A cos 4x + b sin 4x, (d^(2)y)/(dx^(2)) +ky=0 , find k:

Find (d^2 y)/(dx^2) if x^2 + y^2=4 .

If y= (cos x)/(1 + sin x) find dy/dx .

Find (dy)/(dx) if sin y = y cos 2x