Home
Class 12
MATHS
If (x-a)^(2)+(y-b)^(2)=c^(2), for some c...

If `(x-a)^(2)+(y-b)^(2)=c^(2)`, for some `c gt 0`, prove that
`([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2)))`
is a constant independent of a and b.

Text Solution

Verified by Experts

`" We have "(x-a)^(2)+(y-b)^(2)=c^(2),cgt0`
Differentiating w.r.t. x, we get
`2(x-a)+2(y-b)y'=0`
`"or "(x-a)+(y-b)y'=0`
`"or "y'(x-a)/(y-b)`
Differentiating (1), w.r.t. x again, we get
`1+(y')^(2)+(y-b)y''=0`
`therefore" "([1+((dy)/(dx))^(2)]^(3/2))/((d^(2)y)/(dx^(2)))=([1+(y')^(2)]^(3/2))/(([-1+(y')^(2)])/(y-b))`
`=-(y-b)[1+(y')^(2)]^(1/2)`
`=-(y-b)[1+((x-a)/(y-b))^(2)]^(1/2)`
`=-[(y-b)^(2)+(x-a)^(2)]^(1/2)`
`=-c`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

The degree of the differential equation rho= (1+((dy)/(dx))^(2))^(3/2)/((d^(2)y)/(dx^(2))) where rho is a constant is :

The degree of the differential equation [5+((dy)/(dx))^(2)]^(5/3)=x^(5)((d^(2)y)/(dx^(2))) is

If xy=c^(2) , then prove that x^(2)(dy)/(dx)+c^(2)=0

Find the order and degree (if defined) of the equation: a=(1[1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)), where a is constant

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If y= e^(a cos^(-1)x), -1 le x le 1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0 .

(1+x+xy^(2))(dy)/(dx)+(y+y^(3))=0

Solve (d^2y)/(dx^2)=((dy)/(dx))^2

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^2+2y^2+(y^4)/(x^2)