Home
Class 12
MATHS
If y= e^(a cos^(-1)x), -1 le x le 1, sho...

If `y= e^(a cos^(-1)x), -1 le x le 1`, show that `(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0`.

Text Solution

Verified by Experts

`y=e^(a cos^(-1)x)`
`therefore" "(dy)/(dx)=e^(a cos^(-1)x)(-a)/(sqrt(1-x^(2)))=(-ay)/(sqrt(1-x^(2)))`
`"or "(1-x^(2))((dy)/(dx))^(2)=a^(2)y^(2)`
Differentiating both sides with respect to x, we get
`((dy)/(dx))^(2)(-2x)+(1-x^(2))xx2(dy)/(dx)cdot(d^(2)y)/(dx^(2))=a^(2)cdot2ycdot(dy)/(dx)`
`"or "-x(dy)/(dx)+(1-x^(2))(d^(2)y)/(dx^(2))=a^(2).y[(dy)/(dx)ne0]`
`"or "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0

(1+x^(2))(dy)/(dx) = 1-y

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If y=(cos^(-1)x)^(2) prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-2=0 . Hence find y_(2) when x=0

If y=(cos^(-1) x)^(2) prove that (1-x^(2)) (d^(2)y)/(dx^(2)) -x(dy)/(dx) -2=0 . Hence find y_(2) when x=0.

If y = ( cos^(-1) x)^2 , prove that (1-x^2) (d^2 y)/(dx^2) - x(dy)/(dx) - 2=0 . Hence find y_2 when x=0 .

(a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

(1+x+xy^(2))(dy)/(dx)+(y+y^(3))=0

If y= (cos^(-1) x)^2 , prove that (1-x^2) (d^2y)/(dx^2) - x(dy)/(dx) -2 =0 , Hence find y_2 when x=0 .