Home
Class 12
MATHS
If f(x),g(x)a n dh(x) are three polynomi...

If `f(x),g(x)a n dh(x)` are three polynomials of degree 2, then prove that `varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l`

Text Solution

Verified by Experts

`"Let "f(x)=a_(1)x^(2)+a_(2)x+a_(3),g(x)=b_(1)x^(2)+b_(2)x+b_(3), and h(x)=c_(1)x^(2)+c_(2)x+c_(3)." Then,"`
`f'(x)=2a_(1)x+a_(2),g'(x)=2b_(1)x+b_(2),h'(x)=2c_(1)x+c_(2)`
`f'(x)=2a_(1),g''(x)=2b_(1),h''(x)=2c_(1),`
`"and "f'''(x)=g'''(x)=h'''(x)=0`
In order to prove that `phi(x)` is a constant polynomial, it is sufficient to show that `phi'(x)=0` for all values of x, where
`phi(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}|`
`therefore" "phi'(x)=|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f''(x),g''(x),h''(x)):}|`
`+|{:(f(x),g(x),h(x)),(f''(x),g''(x),h''(x)),(f''(x),g''(x),h''(x)):}|`
`+|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(f'''(x),g'''(x),h'''(x)):}|`
`=+0+|{:(f(x),g(x),h(x)),(f'(x),g'(x),h'(x)),(0,0,0):}|`
= 0 + 0 + 0 = 0 for all values of x
`therefore" "phi(x)=` constant for all
Hence, `phi(x)` is a constant polynomial.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos