Home
Class 12
MATHS
Let f: RvecR be a function satisfying co...

Let `f: RvecR` be a function satisfying condition `f(x+y^3)=f(x)+[f(y)]^3 for all x ,y in Rdot` If `f^(prime)(0)geq0,` find `f(10)dot`

Text Solution

Verified by Experts

`"Given "f(x+y^(3))=f(x)+[f(y)]^(3)" (1)"`
`"and "f'(0)ge0" (2)"`
Replacing x, y by 0, we get
`f(0)=f(0)+f(0)^(3)orf(0)=0" (3)"`
`"Also, "f'(0)=underset(hrarr0)lim(f(0+h)-f(0))/(h)=underset(hrarr0)lim(f(h))/(h)" (4)"`
`"Let "I=f'(0)=underset(hrarr0)lim(f(0 +(h^(1//3))^(3))-f(0))/((h^(1//3))^(3))`
`=underset(hrarr0)lim(f((h^(1//3)))^(3))/((h^(1//3))^(3))=underset(hrarr0)lim((f(h^(1//3)))/((h^(1//3))))^(3)=I^(3)`
`"or "I=I^(3)`
`"or "I=0, 1,-as f'(0)ge0`
`therefore" "f'(0)=0,1`
`"Thus "f'(x)=underset(hrarr0)lim(f(x+h)-f(x))/(h)=underset(hrarr0)lim(f(x+(h^(1//3))^(3))-f(x))/((h^(1//3))^(3))`
`=underset(hrarr0)lim(f(x)+(f(h^(1//3)))^(3)-f(x))/((h^(1//3))^(3))" [using (1)]"`
`=underset(hrarr0)lim(f(h^(1//3))/((h^(1//3))))^(3)=(f'(0))^(3)`
`=0,1" [As f'(0)=0, 1 using (5)]"`
Integrating both sides, we get
`f(x)=c or x +c`
`"or "f(x)=0 or x (becausef(0) = 0)`
Thus, f(10) = 0 or 10
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

If for a function f : R to R f (x +y ) =F(x ) + f(y) for all x and y then f(0) is

Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all positive real numbers xa n dydot If f(30)=20 , then find the value of f(40)dot

A function f: R -> R satisfy the equation f (x)f(y) - f (xy)= x+y for all x, y in R and f(y) > 0 , then

If f is a function satisfying f (x +y) = f(x) f(y) for all x, y in N such that f(1) = 3 and sum _(x=1)^nf(x)=120 , find the value of n.

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)"for all "x,y in R If f(3)=4 and f(5)=52, then f'(x) is equal to

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)