Home
Class 12
MATHS
If cosx/2dotcosx/(2^2)dotcosx/(2^3)oo=(s...

If `cosx/2dotcosx/(2^2)dotcosx/(2^3)oo=(sinx)/x ,` then find the value of `1/(2^2)sec^2x/2+1/(2^4)sec^2x/(2^2)+1/(2^6)sec^2x/(2^3)+oo`

Text Solution

Verified by Experts

`"We have "cos""(x)/(2)cdotcos""(x)/(4)cdotcos""(x)/(8)...=(sin x)/(x)." Then find the sum "(1)/(2^(2))sec^(2)""(x)/(2)+(1)/(2^(4))sec^(2)""(x)/(4)+...`
Taking log on both sides, we get
`log cos""(x)/(2)+log cos""(x)/(4)+log cos""(x)/(8)...+...=log sin x-log x`
Differentiating both sides with respect to x, we get
`-(1)/(2)(sin""(x)/(2))/(cos""(x)/(2))-(1)/(4)(sin""(x)/(4))/(cos""(x)/(4))-(1)/(8)(sin""(x)/(8))/(cos""(x)/(8))...=(cos x)/(sin x)-(1)/(x)`
`"or "-(1)/(2)tan""(x)/(2)-(1)/(4)tan""(x)/(4)-(1)/(8)tan"(x)/(8)-...=cot x -(1)/(x)`
Differntiating both sides with respect to x, we get
`-(1)/(2^(2))sec^(2)""(x)/(2)-(1)/(4^(2))sec^(2)""(x)/(4)-(1)/(8^(2))sec^(2)""(x)/(8)-...=-cosec^(2)x+(1)/(x^(2))`
`"or "(1)/(2^(2))sec^(2)""(x)/(2)+(1)/(4^(2))sec^(2)""(x)/(4)+(1)/(8^(2))sec^(2)""(x)/(8)+...=cosec^(2)x-(1)/(x^(2))`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the value of 2+1/(2+1/(2+1/(2+oo)))

Find the range of f(x)=cos^2x+sec^2x .

Find the value of sec^(-1) (-2/(sqrt(3)))

Find the derivative of y = sec^2 2x

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

Find the minimum value of (sec^(-1)x)^2+("c o s e c"^(-1)x)^2

If x=2+2^(2/3)+2^(1/3) , then the value of x^3-6x^2+6x is:

Find the sum of the series 1/(3^2+1)+1/(4^2+2)+1/(5^2+3)+1/(6^2+4)+oo

Evaluate: ("lim")_(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/nsec^2 1]

int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx