Home
Class 12
MATHS
If |a1sinx+a2sin2x++ansinn x|lt=||sinx| ...

If `|a_1sinx+a_2sin2x++a_nsinn x|lt=||sinx|` for `x in R ,` then prove that `|a_1+2a_1+3a+3+n a_n|lt=|`

Text Solution

Verified by Experts

Clearly, we can get `a_(1)+2a_(2)+3a_(3)+…+na_(n),` by differentiating `a_(1) sin x +a_(2) sin 2x + …+a_(n)` sin nx and then putting x=0.
Thus, we have to prove that `|f'(0)|le1.`
where, `f(x)=a_(1) sin x +a_(2) sin 2x +…+a_(n) sin nx`
`therefore" "f'(x)=a_(1) cos x +2a_(2) cos 2x +...+na_(n) cos nx`
`"or "f'(0)=a_(1)+2a_(2)+...+na_(n)`
Also, given `|f(x)|le| sin x |" for "x in R" (1)"`
Put x=0. Then `|f(0)|le or f(0)=0.` Now,
`f'(0)=underset(hrarr0)lim(f(h)-f(0))/(h)=underset(hrarr0)lim(f(h))/(h)" [as f(0) = 0]"`
`"or "|f'(0)|=underset(hrarr0)lim|(f(h))/(h)|leunderset(hrarr0)lim|( sin h)/h|=1 [as |f(x)|le| sin x|]`
`"Hence, "|f'(0)|le1.`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If |a_1sinx+a_2sin2x++a_nsinn x|lt=|sinx| for x in R , then prove that |a_1+2a_1+3a+3+n a_n|lt=1

Suppose p(x)=a_0+a_1x+a_2x^2++a_n x^ndot If |p(x)|lt=e^(x-1)-1| for all xgeq0, prove that |a_1+2a_2++n a_n|lt=1.

Prove that sinx +sin2x +sin3x =sin2x (1+2cosx) .

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If f(x)=(a_1x+b_1)^2+(a_2x+b_2)^2+...+(a_n x+b_n)^2 , then prove that (a_1b_1+a_2b_2++a_n b_n)^2lt=(a1 2+a2 2++a n2)^(b1 2+b2 2++b n2)dot

If S+a_1+a_2+a_3++a_n ,a_1 in R^+ for i=1ton , then prove that S/(S-a_1)+S/(S-a_2)++S/(S-a_n)geq(n^2)/(n-1),AAngeq2

(cosx)/((1-sinx)(2-sinx)) [Hint : Put sin x = t]

If 1 + sin x + sin^2 x + sin ^3 x + ……. to oo = 4 +2 sqrt(3) , 0 lt x lt pi then x=

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If a_1, a_2, ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)++(a_(n-1))/(a_n)+(a_n)/(a_1)> n