Home
Class 12
MATHS
Find (dy)/(dx) if x=cos theta - cos 2 ...

Find `(dy)/(dx)` if `x=cos theta - cos 2 theta`
`and" "y = sin theta - sin 2theta`

Text Solution

Verified by Experts

The correct Answer is:
`(cos theta -2 cos 2 theta)/(2 sin 2 theta - sin theta)`

The given equations are `x=cos theta - cos 2 theta`
`and" "y = sin theta - sin 2theta`
`"Then, "(dx)/(d""theta)=-sin theta - (-2 sin 2theta)=2 sin 2 theta- sin theta`
`"And "(dy)/(d""theta)=cos theta -2 cos 2theta`
`therefore" "(dy)/(dx)=(dy//d""theta)/(dx//d""theta)=(cos theta-2 cos 2theta)/(2 sin 2theta- sin theta)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x = 2costheta- cos 2theta, y = 2sintheta -sin 2theta, find dy/dx.

Find (dy)/(dx), " if "x= a cos theta, y= a sin theta .

Find (dy)/(dx) if x=3 cos theta- 2cos^(3)theta,y=3 sin theta -2sin^(3) theta.

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx) . x= cos theta-cos 2theta, y= sin theta-sin 2theta .

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find (dy)/(dx) . x= a (cos theta+ theta sin theta), y= a (sin theta-theta cos theta) .

Prove that cos 8 theta cos 2 theta = cos^(2) 5theta- sin^(2) 3 theta

Show that (1)/( cos theta ) -cos theta =tan theta .sin theta

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Solve the equations: sin 2theta - cos 2 theta - sin theta + cos theta = 0